Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Near Zero-Energy Computation Using Quantum-Dot Cellular Automata

Published: 25 November 2019 Publication History

Abstract

Near zero-energy computing describes the concept of executing logic operations below the (kBT ln 2) energy limit. Landauer discussed that it is impossible to break this limit as long as the computations are performed in the conventional, non-reversible way. But even if reversible computations were performed, the basic energy needed for operating circuits realized in conventional technologies is still far above the (kBT ln 2) energy limit (i.e., the circuits do not operate in a physically reversible manner). In contrast, novel nanotechnologies like Quantum-dot Cellular Automata (QCA) allow for computations with very low energy dissipation and hence are promising candidates for breaking this limit. Accordingly, the design of reversible QCA circuits is an active field of research. But whether QCA in general and the proposed circuits in particular are indeed able to operate in a logically and physically reversible fashion is unknown thus far, because neither physical realizations nor appropriate simulation approaches are available. In this work, we address this gap by utilizing an established theoretical model that has been implemented in a physics simulator enabling a precise consideration of how energy is dissipated in QCA designs. Our results provide strong evidence that QCA is indeed a suitable technology for near zero-energy computing. Further, the first design of a logically and physically reversible adder circuit is presented, which serves as proof of concept for future circuits with the ability of near zero-energy computing.

References

[1]
N. G. Anderson and S. Bhanja. 2014. Field-Coupled Nanocomputing: Paradigms, Progress, and Perspectives. Springer, New York, NY.
[2]
I. L. Bajec and P. Pečar. 2012. Two-layer synchronized ternary quantum-dot cellular automata wire crossings. Nanoscale Research Letters 7, 1 (2012), 221.
[3]
C. H. Bennett. 1973. Logical reversibility of computation. IBM Journal of Research and Development 17, 6 (Nov. 1973), 525--532.
[4]
A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz. 2012. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 7388 (March 2012), 187--189.
[5]
A. M. Chabi, A. Roohi, H. Khademolhosseini, S. Sheikhfaal, S. Angizi, K. Navi, and R. F. DeMara. 2017. Towards ultra-efficient QCA reversible circuits. Microprocessors and Microsystems 49, C (March 2017), 127--138.
[6]
J. F. Chaves, D. S. Silva, V. V. Camargos, and O. P. V. Neto. 2015. Towards reversible QCA computers: Reversible gates and ALU. In Proceedings of the Latin American Symposium on Circuits Systems. 1--4.
[7]
J. F. Chaves, M. A. Ribeiro, F. Sill Torres, and O. P. V. Neto. 2019. Designing partially reversible field-coupled nanocomputing circuits. IEEE Transactions on Nanotechnology 18 (2019), 589--597.
[8]
E. P. DeBenedictis, M. P. Frank, N. Ganesh, and N. G. Anderson. 2016. A path toward ultra-low-energy computing. In Proceedings of the 2016 IEEE International Conference on Rebooting Computing (ICRC’16). 1--8.
[9]
M. P. Frank. 2017. Throwing computing into reverse: The future of computing depends on making it reversible. IEEE Spectrum 54, 9 (Sept. 2017), 32--37.
[10]
N. Gershenfeld. 1996. Signal entropy and the thermodynamics of computation. IBM Systems Journal 35, 3--4 (1996), 577--586.
[11]
A. Gin, P. D. Tougaw, and S. Williams. 1999. An alternative geometry for quantum-dot cellular automata. Journal of Applied Physics 85, 12 (1999), 8281--8286.
[12]
M. Goswamia, B. Sen, R. Mukherjee, and B. K. Sikdar. 2017. Design of testable adder in quantum-dot cellular automata with fault secure logic. Microelectronics Journal 60, C (Feb. 2017), 1--12.
[13]
K. Hennessy and C. S. Lent. 2001. Clocking of molecular quantum-dot cellular automata. Journal of Vacuum Science 8 Technology B 19, 5 (2001), 1752--1755.
[14]
J. Hong, B. Lambson, S. Dhuey, and J. Bokor. 2016. Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Science Advances 2, 3 (2016), e1501492.
[15]
J. Huang, M. Momenzadeh, L. Schiano, M. Ottavi, and F. Lombardi. 2005. Tile-based QCA design using majority-like logic primitives. ACM Journal on Emerging Technologies in Computing Systems 1, 3 (Oct. 2005), 163--185.
[16]
J. Huang, X. Ma, and F. Lombardi. 2006. Energy analysis of QCA circuits for reversible computing. In Proceedings of the 2006 6th IEEE Conference on Nanotechnology, Vol. 1. 39--42.
[17]
N. Jeanniot, A. Todri-Sanial, P. Nouet, G. Pillonnet, and H. Fanet. 2016. Investigation of the power-clock network impact on adiabatic logic. In Proceedings of the Workshop on Signal and Power Integrity. 1--4.
[18]
R. Landauer. 1961. Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, 3 (1961), 183--191.
[19]
C. S. Lent, M. Liu, and Y. Lu. 2006. Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17, 16 (2006), 4240.
[20]
C. S. Lent and P. D. Tougaw. 1997. A device architecture for computing with quantum dots. Proceedings of the IEEE 85, 4 (April 1997), 541--557.
[21]
W. Liu, E. E. Swartzlander Jr., and M. O’Neill. 2013. Design of Semiconductor QCA Systems. Artech House.
[22]
D. Mukhopadhyay and P. Dutta. 2015. A study on energy optimized 4 dot 2 electron two dimensional quantum dot cellular automata logical reversible flip-flops. Microelectronics Journal 46, 6 (2015), 519--530.
[23]
I. Neri and M. Lopez-Suarez. 2016. Heat production and error probability relation in Landauer reset at effective temperature. Nature Scientific Reports 6, 34039.
[24]
A. O. Orlov, C. S. Lent, C. C. Thorpe, G. P. Boechler, and G. L. Snider. 2012. Experimental test of Landauer’s principle at the sub-kBT level. Japanese Journal of Applied Physics 51, 6S (2012), 06FE10.
[25]
M. Ottavi, S. Pontarelli, E. P. DeBenedictis, A. Salsano, S. Frost-Murphy, P. K. Kogge, and F. Lombardi. 2011. Partially reversible pipelined QCA circuits: Combining low power with high throughput. IEEE Transactions on Nanotechnology 10, 6 (Nov. 2011), 1383--1393.
[26]
J. Pitters, L. Livadaru, M. B. Haider, and R. A. Wolkow. 2011. Tunnel coupled dangling bond structures on hydrogen terminated silicon surfaces. Journal of Chemical Physics 134, 6 (2011), 064712.
[27]
E. Rahimi. 2016. Energy dissipation of quantum-dot cellular automata logic gates. Micro Nano Letters 11, 7 (2016), 369--371.
[28]
F. Sill Torres, R. Wille, P. Niemann, and R. Drechsler. 2018. An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems 37, 12 (Dec. 2018), 3031--3041.
[29]
G. Singh, R. K. Sarin, and B. Raj. 2017. Design and analysis of area efficient QCA based reversible logic gates. Microprocessors and Microsystems 52 (2017), 59--68.
[30]
S. Srivastava, S. Sarkar, and S. Bhanja. 2009. Estimation of upper bound of power dissipation in QCA circuits. IEEE Transactions on Nanotechnology 8, 1 (Jan. 2009), 116--127.
[31]
J. Timler and C. S. Lent. 2002. Power gain and dissipation in quantum-dot cellular automata. Journal of Applied Physics 91, 2 (2002), 823--831.
[32]
J. Timler and C. S. Lent. 2003. Maxwell’s demon and quantum-dot cellular automata. Journal of Applied Physics 94, 2 (2003), 1050--1060.
[33]
M. Walter, R. Wille, D. Große, F. Sill Torres, and R. Drechsler. 2018. An exact method for design exploration of quantum-dot cellular automata. In Proceedings of the Conference on Design, Automation, and Test in Europe. 503--508.
[34]
M. Walter, R. Wille, D. Große, F. Sill Torres, and R. Drechsler. 2019a. Placement and routing for tile-based field-coupled nanocomputing circuits is NP-complete. ACM Journal on Emerging Technologies in Computing Systems 15, 29 (2019), Article 29.
[35]
M. Walter, R. Wille, F. Sill Torres, D. Große, and R. Drechsler. 2019b. Scalable design for field-coupled nanocomputing circuits. In Proceedings of the ASP Design Automation Conference. 197--202.
[36]
K. Walus and G. A. Jullien. 2006. Design tools for an emerging SoC technology: Quantum-dot cellular automata. Proceedings of the IEEE 94, 6 (June 2006), 1225--1244.
[37]
R. Wille, M. Walter, F. Sill Torres, D. Große, and R. Drechsler. 2019. Ignore clocking constraints: An alternative physical design methodology for field-coupled nanotechnologies. In Proceedings of the 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI’19). 651--656.
[38]
Y. Ye and K. Roy. 1996. Energy recovery circuits using reversible and partially reversible logic. IEEE Transactions on Circuits and Systems 43, 9 (1996), 769--778.
[39]
A. Zulehner and R. Wille. 2017. Make it reversible: Efficient embedding of non-reversible functions. In Proceedings of the Conference on Design, Automation, and Test in Europe. 458--463.
[40]
A. Zulehner and R. Wille. 2018. One-pass design of reversible circuits: Combining embedding and synthesis for reversible logic. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems 37, 5 (May 2018), 996--1008.
[41]
A. Zulehner, M. P. Frank, and R. Wille. 2019. Design automation for adiabatic circuits. In Proceedings of the ASP Design Automation Conference. 669--674.

Cited By

View all
  • (2024)An Ultra-Energy-Efficient Reversible Quantum-Dot Cellular Automata 8:1 Multiplexer CircuitQuantum Reports10.3390/quantum60100046:1(41-57)Online publication date: 16-Jan-2024
  • (2024)Hybrid Quantum-Dot Cellular Automata Nanocomputing CircuitsElectronics10.3390/electronics1314276013:14(2760)Online publication date: 13-Jul-2024
  • (2024)Designing a Quantum-Dot Cellular Automata-Based Half-Adder Circuit Using Partially Reversible Majority Gates2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS)10.1109/MWSCAS60917.2024.10658906(1150-1153)Online publication date: 11-Aug-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems  Volume 16, Issue 1
January 2020
232 pages
ISSN:1550-4832
EISSN:1550-4840
DOI:10.1145/3365593
  • Editor:
  • Ramesh Karri
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 25 November 2019
Accepted: 01 September 2019
Revised: 01 July 2019
Received: 01 November 2018
Published in JETC Volume 16, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Emerging technology
  2. field-coupled nanocomputing
  3. reversible computing

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)An Ultra-Energy-Efficient Reversible Quantum-Dot Cellular Automata 8:1 Multiplexer CircuitQuantum Reports10.3390/quantum60100046:1(41-57)Online publication date: 16-Jan-2024
  • (2024)Hybrid Quantum-Dot Cellular Automata Nanocomputing CircuitsElectronics10.3390/electronics1314276013:14(2760)Online publication date: 13-Jul-2024
  • (2024)Designing a Quantum-Dot Cellular Automata-Based Half-Adder Circuit Using Partially Reversible Majority Gates2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS)10.1109/MWSCAS60917.2024.10658906(1150-1153)Online publication date: 11-Aug-2024
  • (2023)Novel ultra-energy-efficient reversible designs of sequential logic quantum-dot cellular automata flip-flop circuitsThe Journal of Supercomputing10.1007/s11227-023-05134-179:10(11530-11557)Online publication date: 1-Mar-2023
  • (2022)Design of efficient binary-coded decimal adder in QCA technology with a regular clocking schemeComputers and Electrical Engineering10.1016/j.compeleceng.2022.107999101:COnline publication date: 1-Jul-2022
  • (2021)Sustainable computingUbiquity10.1145/34506122021:February(1-10)Online publication date: 3-Mar-2021
  • (2021)One-pass Synthesis for Field-coupled Nanocomputing TechnologiesProceedings of the 26th Asia and South Pacific Design Automation Conference10.1145/3394885.3431607(574-580)Online publication date: 29-Jan-2021
  • (2021)PreliminariesDesign Automation for Field-coupled Nanotechnologies10.1007/978-3-030-89952-3_2(7-35)Online publication date: 21-Oct-2021
  • (2020)Reversible Palm Vein Authenticator Design With Quantum Dot Cellular Automata for Information Security in Nanocommunication NetworkIEEE Access10.1109/ACCESS.2020.30258228(174821-174832)Online publication date: 2020

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media