Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Public Access

Distributed Edge Coloring and a Special Case of the Constructive Lovász Local Lemma

Published: 15 November 2019 Publication History

Abstract

The complexity of distributed edge coloring depends heavily on the palette size as a function of the maximum degree Δ. In this article, we explore the complexity of edge coloring in the LOCAL model in different palette size regimes. Our results are as follows.
Lower Bounds: First, we simplify the round elimination technique of Brandt et al. [16] and prove that (2Δ −2)-edge coloring requires Ω (logΔ log n) time with high probability and Ω (logΔ n) time deterministically, even on trees. Second, we show that a natural approach to computing (Δ +1)-edge colorings (Vizing’s theorem), namely, extending an arbitrary partial coloring by iteratively recoloring subgraphs, requires Ω (Δ log n) time.
Upper Bounds on General Graphs: We give a randomized edge coloring algorithm that can use palette sizes as small as Δ + Õ(√Δ), which is a natural barrier for randomized approaches. The running time of our (1+ϵ)Δ-edge coloring algorithm is usually dominated by O(\log ϵ−1) calls to a distributed Lovász local lemma (LLL) algorithm. For example, using the Chung-Pettie-Su LLL algorithm, we compute a (1+ϵ)Δ-edge coloring in O(log n) time when ϵ ≥ (log3 Δ) / √ Δ, or O(logΔ n) + (log log n)3 + o(1) time when ϵ = Ω (1). When Δ is sublogarithmic in n the performance is improved with the Ghaffari-Harris-Kuhn LLL algorithm.
Upper Bounds on Trees: We show that the Ω (logΔ log n) lower bound can be nearly matched on trees. To establish this result, we develop a new distributed Lovász local lemma algorithm for tree-structured dependency graphs, which arise naturally from O(1)-round probabilistic algorithms run on trees. Specifically, our (1+ϵ)Δ-edge coloring algorithm for trees takes O(log (1 / ϵ)) ⋅ max { log log n\ log log log n, loglog Δ log n} time when ϵ ≥ (log3 Δ) / √ Δ, or O(max { log log n\ log log log n, logΔ log n}) time when ϵ = Ω (1).

References

[1]
N. Alon, L. Babai, and A. Itai. 1986. A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algor. 7, 4 (1986), 567--583.
[2]
E. Arjomandi. 1982. An efficient algorithm for colouring the edges of a graph with Δ + 1 colours. Info. Syst. Operat. Res. 20, 2 (1982), 82--101.
[3]
B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. 1989. Network decomposition and locality in distributed computation. In Proceedings of the 30th IEEE Symposium on Foundations of Computer Science (FOCS’89). 364--369.
[4]
A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, M. Rabie, and J. Suomela. 2019. The distributed complexity of locally checkable problems on paths is decidable. In Proceedings of the 38th ACM Symposium on Principles of Distributed Computing (PODC’19).
[5]
A. Balliu, S. Brandt, D. Olivetti, and J. Suomela. 2018. Almost global problems in the LOCAL model. In Proceedings of the 32nd International Symposium on Distributed Computing (DISC’18). 9:1--9:16.
[6]
A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, D. Olivetti, and J. Suomela. 2018. New classes of distributed time complexity. In Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC’18). 1307--1318.
[7]
A. Balliu, J. Hirvonen, D. Olivetti, and J. Suomela. 2019. Hardness of minimal symmetry breaking in distributed computing. In Proceedings of the 38th ACM Symposium on Principles of Distributed Computing (PODC’19).
[8]
L. Barenboim. 2015. Deterministic (Δ + 1)-coloring in sublinear (in Δ) time in static, dynamic and faulty networks. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC’15). 345--354.
[9]
L. Barenboim and M. Elkin. 2011. Deterministic distributed vertex coloring in polylogarithmic time. J. ACM 58, 5 (2011), 23.
[10]
L. Barenboim and M. Elkin. 2013. Distributed deterministic edge coloring using bounded neighborhood independence. Distrib. Comput. 26, 5 (Oct. 2013), 273--287.
[11]
L. Barenboim, M. Elkin, and F. Kuhn. 2014. Distributed (Δ + 1)-coloring in linear (in Δ) time. SIAM J. Comput. 43, 1 (2014), 72--95.
[12]
L. Barenboim, M. Elkin, and T. Maimon. 2017. Deterministic distributed (Δ + o (Δ))-edge-coloring, and vertex-coloring of graphs with bounded diversity. In Proceedings of the 36th ACM Symposium on Principles of Distributed Computing (PODC’17). 175--184.
[13]
L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. 2016. The locality of distributed symmetry breaking. J. ACM 63, 3 (2016).
[14]
J. Beck. 1991. An algorithmic approach to the Lovász local lemma. I. Random Struct. Algor. 2, 4 (1991), 343--366.
[15]
B. Bollobás. 1978. Extremal Graph Theory. London Mathematical Society Monographs, Vol. 11. Academic Press, London.
[16]
S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela, and J. Uitto. 2016. A lower bound for the distributed Lovász local lemma. In Proceedings of the 48th ACM Symposium on the Theory of Computing (STOC’16). 479--488.
[17]
S. Brandt, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, P. R. J. Östergård, C. Purcell, J. Rybicki, J. Suomela, and P. Uznanski. 2017. LCL problems on grids. In Proceedings of the 36th ACM Symposium on Principles of Distributed Computing (PODC’17). 101--110.
[18]
Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto. 2018. The complexity of distributed edge coloring with small palettes. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA’18). 2633--2652.
[19]
Y.-J. Chang, T. Kopelowitz, and S. Pettie. 2019. An exponential separation between randomized and deterministic complexity in the LOCAL model. SIAM J. Comput. 48, 1 (2019), 122--143.
[20]
Y.-J. Chang, W. Li, and S. Pettie. 2018. An optimal distributed (Δ + 1)-coloring algorithm? In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC’18). ACM, New York, NY, 445--456.
[21]
Y.-J. Chang and S. Pettie. 2019. A time hierarchy theorem for the LOCAL model. SIAM J. Comput. 48, 1 (2019), 33--69.
[22]
K.-M. Chung, S. Pettie, and H.-H. Su. 2017. Distributed algorithms for the Lovász local lemma and graph coloring. Distrib. Comput. 30 (2017), 261--280. Issue 4.
[23]
R. Cole and U. Vishkin. 1986. Deterministic coin tossing with applications to optimal parallel list ranking. Info. Control 70, 1 (1986), 32--53.
[24]
A. Czygrinow, M. Hanckowiak, and M. Karonski. 2001. Distributed O(Δ log n)-edge-coloring algorithm. In Proceedings of the European Symposium on Algorithms (ESA’01). 345--355.
[25]
X. Dahan. 2014. Regular graphs of large girth and arbitrary degree. Combinatorica 34, 4 (2014), 407--426.
[26]
D. P. Dubhashi, D. A. Grable, and A. Panconesi. 1998. Near-optimal, distributed edge colouring via the nibble method. Theor. Comput. Sci. 203, 2 (1998), 225--251.
[27]
D. P. Dubhashi and A. Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press.
[28]
D. P. Dubhashi and D. Ranjan. 1998. Balls and bins: A study in negative dependence. J. Random Struct. Algs. 13, 2 (1998), 99--124.
[29]
M. Elkin, S. Pettie, and H.-H. Su. 2015. (2Δ − 1)-edge coloring is much easier than maximal matching in the distributed setting. In Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 355--370.
[30]
M. Fischer and M. Ghaffari. 2017. Sublogarithmic distributed algorithms for Lovász local lemma with implications on complexity hierarchies. In Proceedings of the 31st International Symposium on Distributed Computing (DISC’17). 18:1--18:16.
[31]
M. Fischer, M. Ghaffari, and F. Kuhn. 2017. Deterministic distributed edge coloring via hypergraph maximal matching. In Proceedings of the 58th IEEE Symposium on Foundations of Computer Science (FOCS’17). 180--191.
[32]
P. Fraigniaud, M. Heinrich, and A. Kosowski. 2016. Local conflict coloring. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS’16). 625--634.
[33]
H. N. Gabow, T. Nishizeki, O. Kariv, D. Leven, and O. Terada. 1985. Algorithms for Edge-coloring Graphs. Technical Report TRECIS-8501. Tohoku University.
[34]
M. Ghaffari. 2016. An improved distributed algorithm for maximal independent set. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16). 270--277.
[35]
M. Ghaffari, D. G. Harris, and F. Kuhn. 2018. On derandomizing local distributed algorithms. In Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS’18). 662--673.
[36]
M. Ghaffari, J. Hirvonen, F. Kuhn, and Y. Maus. 2018. Improved distributed delta-coloring. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (PODC’18). 427--436.
[37]
M. Ghaffari, J. Hirvonen, F. Kuhn, Y. Maus, J. Suomela, and J. Uitto. 2017. Improved distributed degree splitting and edge coloring. In Proceedings of the 31st International Symposium on Distributed Computing (DISC’17). 19:1--19:15.
[38]
M. Ghaffari, F. Kuhn, and Y. Maus. 2017. On the complexity of local distributed graph problems. In Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC’17). 784--797.
[39]
M. Ghaffari, F. Kuhn, Y. Maus, and J. Uitto. 2018. Deterministic distributed edge-coloring with fewer colors. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC’18). ACM, New York, NY, 418--430.
[40]
M. Ghaffari and H.-H. Su. 2017. Distributed degree splitting, edge coloring, and orientations. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17). 2505--2523.
[41]
D. A. Grable. 1998. A large deviation inequality for functions of independent, multi-way choices. Combinator. Prob. Comput. 7, 1 (1998), 57--63.
[42]
D. G. Harris. 2018. Distributed approximation algorithms for maximum matching in graphs and hypergraphs. CoRR abs/1807.07645.
[43]
D. G. Harris, J. Schneider, and H.-H. Su. 2018. Distributed (Δ + 1)-coloring in sublogarithmic rounds. J. ACM 65, 4 (Apr. 2018).
[44]
I. Holyer. 1981. The NP-completeness of edge-coloring. SIAM J. Comput. 10, 4 (1981), 718--720.
[45]
H. J. Karloff and D. B. Shmoys. 1987. Efficient parallel algorithms for edge coloring problems. J. Algor. 8, 1 (1987), 39--52.
[46]
A. Korman, J.-S. Sereni, and L. Viennot. 2013. Toward more localized local algorithms: Removing assumptions concerning global knowledge. Distrib. Comput. 26, 5--6 (2013), 289--308.
[47]
F. Kuhn and R. Wattenhofer. 2006. On the complexity of distributed graph coloring. In Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC’06). 7--15.
[48]
N. Linial. 1992. Locality in distributed graph algorithms. SIAM J. Comput. 21, 1 (1992), 193--201.
[49]
M. Luby. 1986. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15, 4 (1986), 1036--1053.
[50]
G. L. Miller and J. H. Reif. 1989. Parallel tree contraction—Part I: Fundamentals. Adv. Comput. Res. 5 (1989), 47--72.
[51]
M. Molloy and B. Reed. 2000. Near-optimal list colorings. Random Struct. Algor. 17, 3--4 (2000), 376--402.
[52]
M. Molloy and B. Reed. 2001. Graph Colouring and the Probabilistic Method. Springer.
[53]
R. A. Moser and G. Tardos. 2010. A constructive proof of the general Lovász local lemma. J. ACM 57, 2 (2010).
[54]
M. Naor. 1991. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM J. Discrete Math. 4, 3 (1991), 409--412.
[55]
M. Naor and L. J. Stockmeyer. 1995. What can be computed locally? SIAM J. Comput. 24, 6 (1995), 1259--1277.
[56]
A. Panconesi and A. Srinivasan. 1995. The local nature of Δ-coloring and its algorithmic applications. Combinatorica 15, 2 (1995), 255--280.
[57]
A. Panconesi and A. Srinivasan. 1996. On the complexity of distributed network decomposition. J. Algor. 20, 2 (1996), 356--374.
[58]
A. Panconesi and A. Srinivasan. 1997. Randomized distributed edge coloring via an extension of the Chernoff-Hoeffding bounds. SIAM J. Comput. 26, 2 (1997), 350--368.
[59]
D. Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. SIAM.
[60]
S. Pettie and H.-H. Su. 2015. Distributed algorithms for coloring triangle-free graphs. Info. Comput. 243 (2015), 263--280.
[61]
J. Schneider and R. Wattenhofer. 2010. A new technique for distributed symmetry breaking. In Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing (PODC’10). 257--266.
[62]
H.-H. Su and H. T. Vu. 2019. Towards the locality of Vizing’s theorem. In Proceedings of the 51st ACM Symposium on Theory of Computing (STOC’19). 355--364.
[63]
V. G. Vizing. 1964. On an estimate of the chromatic class of a p-graph. Diskret. Analiz No. 3 (1964), 25--30.

Cited By

View all

Index Terms

  1. Distributed Edge Coloring and a Special Case of the Constructive Lovász Local Lemma

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Algorithms
    ACM Transactions on Algorithms  Volume 16, Issue 1
    Special Issue on Soda'18 and Regular Papers
    January 2020
    369 pages
    ISSN:1549-6325
    EISSN:1549-6333
    DOI:10.1145/3372373
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 15 November 2019
    Accepted: 01 August 2019
    Revised: 01 June 2019
    Received: 01 April 2018
    Published in TALG Volume 16, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Distributed algorithms
    2. LOCAL model
    3. Lovász local lemma
    4. edge coloring

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)262
    • Downloads (Last 6 weeks)26
    Reflects downloads up to 02 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Component stability in low-space massively parallel computationDistributed Computing10.1007/s00446-024-00461-937:1(35-64)Online publication date: 1-Mar-2024
    • (2023)Distributed Coloring of HypergraphsStructural Information and Communication Complexity10.1007/978-3-031-32733-9_5(89-111)Online publication date: 6-Jun-2023
    • (2022)Distributed ∆-coloring plays hide-and-seekProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520027(464-477)Online publication date: 9-Jun-2022
    • (2022)Distributed Edge Coloring in Time Polylogarithmic in ΔProceedings of the 2022 ACM Symposium on Principles of Distributed Computing10.1145/3519270.3538440(15-25)Online publication date: 20-Jul-2022
    • (2022)Distributed Lower Bounds for Ruling SetsSIAM Journal on Computing10.1137/20M138177051:1(70-115)Online publication date: 8-Feb-2022
    • (2021)A Meeting Point of Probability, Graphs, and Algorithms: The Lovász Local Lemma and Related Results—A SurveyAlgorithms10.3390/a1412035514:12(355)Online publication date: 8-Dec-2021
    • (2021)Component Stability in Low-Space Massively Parallel ComputationProceedings of the 2021 ACM Symposium on Principles of Distributed Computing10.1145/3465084.3467903(481-491)Online publication date: 21-Jul-2021
    • (2021)Improved Distributed Lower Bounds for MIS and Bounded (Out-)Degree Dominating Sets in TreesProceedings of the 2021 ACM Symposium on Principles of Distributed Computing10.1145/3465084.3467901(283-293)Online publication date: 21-Jul-2021
    • (2021)Almost global problems in the LOCAL modelDistributed Computing10.1007/s00446-020-00375-234:4(259-281)Online publication date: 1-Aug-2021
    • (2020)Distributed Lower Bounds for Ruling Sets2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS46700.2020.00042(365-376)Online publication date: Nov-2020

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media