Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3356250.3360027acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

Tagtag: material sensing with commodity RFID

Published: 10 November 2019 Publication History

Abstract

Material sensing is an essential ingredient for many IoT applications. While hyperspectral camera, infrared, X-Ray, and Radar provide potential solutions for material identification, high cost is the major concern limiting their applications. In this paper, we explore the capability of employing RF signals for fine-grained material sensing with commodity RFID device. The key reason for our system to work is that the tag antenna's impedance is changed when it is close or attached to a target. The amount of impedance change is dependent on the target's material type, thus enabling us to utilize the impedance-related phase change available at commodity RFID devices for material sensing. Several key challenges are addressed before we turn the idea into a functional system: (i) the random tag-reader distance causes an additional unknown phase change on top of the phase change caused by the target material; (ii) the tag rotations cause phase shifts and (iii) for conductive liquid, there exists liquid reflection which interferes with the impedance-caused phase change. We address these challenges with novel solutions. Comprehensive experiments show high identification accuracies even for very similar materials such as Pepsi and Coke.

References

[1]
N. Adair. Radio frequency identification (rfid) power budgets for packaging applications. PGK, 2005.
[2]
E. M. Amin, R. Bhattacharyya, S. Kumar, and S. Sarma. Towards low-cost resolution optimized passive uhf rfid light sensing. In WAMICON, pages 1--6, 2014.
[3]
C. Balas, G. Epitropou, A. Tsapras, and N. Hadjinicolaou. A novel hyperspectral camera and analysis platform for the non-destructive material identification and mapping: An application in paintings by el greco. In IST, pages 211--215. IEEE, 2016.
[4]
R. Bhattacharyya, C. Floerkemeier, and S. Sarma. Low-cost, ubiquitous rfid-tagantenna-based sensing. IEEE, 98(9):1593--1600, 2010.
[5]
R. Bhattacharyya, C. Floerkemeier, and S. Sarma. Rfid tag antenna based sensing: Does your beverage glass need a refill? In RFID, pages 126--133, 2010.
[6]
R. Bhattacharyya, C. Floerkemeier, S. Sarma, and D. Deavours. Rfid tag antenna based temperature sensing in the frequency domain. In RFID, pages 70--77. IEEE, 2011.
[7]
L.-X. Chuo, Z. Luo, D. Sylvester, D. Blaauw, and H.-S. Kim. Rf-echo: A non-line-of-sight indoor localization system using a low-power active rf reflector asic tag. In MobiCom, pages 222--234. ACM, 2017.
[8]
A. Dhekne, M. Gowda, Y. Zhao, H. Hassanieh, and R. Roy Choudhury. Liquid: A wireless liquid identifier. In MobiSys, pages 1--13, 2018.
[9]
D. M. Dobkin. The RF in RFID: passive UHF RFID in practice. Newnes, 2012.
[10]
D. M. Dobkin and S. M. Weigand. Environmental effects on rfid tag antennas. In MTTS, pages 135--138, 2005.
[11]
K. Fujimoto. Mobile antenna systems handbook. Artech House, 2008.
[12]
H. Fukuda, K. Kosaka, and W. Hattori. Rfid-based sensing technology with microstrip lines. In Sensors, pages 839--842, 2014.
[13]
C. Gao and Y. Li. Livetag: Sensing human-object interaction through passive chipless wifi tags. In NSDI, pages 165--178, 2018.
[14]
J. D. Griffin, G. D. Durgin, A. Haldi, and B. Kippelen. Radio link budgets for 915 mhz rfid antennas placed on various objects. In Texas Wireless Symposium, 2005.
[15]
U. Ha, Y. Ma, Z. Zhong, T. Hsu, and F. Adib. Learning food quality and safety from wireless stickers. In Hotnets, pages 106--112. ACM, 2018.
[16]
P. Hillyard, C. Qi, A. Al-Husseiny, G. D. Durgin, and N. Patwari. Focusing through walls: An e-shaped patch antenna improves whole-home radio tomography. In RFID, pages 174--181. IEEE, 2017.
[17]
E. Jones, S. D. Pringle, and Z. Takats. Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue, 2 2018. US Patent App. 15/555,818.
[18]
K. Joshi, D. Bharadia, M. Kotaru, and S. Katti. Wideo: fine-grained device-free motion tracing using rf backscatter. In NSDI, pages 189--204, 2015.
[19]
M. A. A. H. Khan, R. Kukkapalli, P. Waradpande, S. Kulandaivel, N. Banerjee, N. Roy, and R. Robucci. Ram: Radar-based activity monitor. In INFOCOM, pages 1--9. IEEE, 2016.
[20]
B. Korany, C. R. Karanam, and Y. Mostofi. Adaptive near-field imaging with robotic arrays.
[21]
M. Kotaru, P. Zhang, and S. Katti. Localizing low-power backscatter tags using commodity wifi. In CoNEXT, pages 251--262. ACM, 2017.
[22]
S. Kumar and D. Katabi. Decimeter-level localization with a single wifi access point. In NSDI, pages 165--178, 2016.
[23]
T. Li, Q. Liu, and X. Zhou. Practical human sensing in the light. In MobiSys, pages 71--84, 2016.
[24]
Y. Ma, N. Selby, and F. Adib. Minding the billions: Ultra-wideband localization for deployed rfid tags. In MobiCom, pages 248--260. ACM, 2017.
[25]
S. Manzari, C. Occhiuzzi, S. Nawale, A. Catini, C. D. Natale, and G. Marrocco. Humidity sensing by polymer-loaded uhf rfid antennas. Sensors, 12(9):2851--2858, 2012.
[26]
W. Mao, J. He, and L. Qiu. Cat: high-precision acoustic motion tracking. In MobiCom, pages 69--81. ACM, 2016.
[27]
W. Mao, Z. Zhang, L. Qiu, J. He, Y. Cui, and S. Yun. Indoor follow me drone. In MobiSys, pages 345--358. ACM, 2017.
[28]
P. Melgarejo, X. Zhang, P. Ramanathan, and D. Chu. Leveraging directional antenna capabilities for fine-grained gesture recognition. In UbiComp, pages 541--551. ACM, 2014.
[29]
R. Nandakumar, B. Kellogg, and S. Gollakota. Wi-fi gesture recognition on existing devices. arXiv preprint arXiv:1411.5394, 2014.
[30]
K. Ogawa, T. Hirokawa, and S. Nakamura. Identification of a material with a photon counting x-ray ct system. In Nuclear Science Symposium Conference Record, pages 2582 -- 2586, 2011.
[31]
S. Pradhan, E. Chai, K. Sundaresan, L. Qiu, M. A. Khojastepour, and S. Rangarajan. Rio: A pervasive rfid-based touch gesture interface. In MobiSys, pages 261--274. ACM, 2017.
[32]
J. T. Prothro, G. D. Durgin, and J. D. Griffin. The effects of a metal ground plane on rfid tag antennas. In Antennas and Propagation Society International Symposium, pages 3241--3244. IEEE, 2006.
[33]
B. M. Rankin, J. Meola, D. L. Perry, and J. R. Kaufman. Methods and challenges for target detection and material identification for longwave infrared hyperspectral imagery. In SPIE Defense Security, pages 1--12, 2016.
[34]
W. F. Schmidt and K. Yoshino. Ion mobilities in non-polar dielectric liquids: silicone oils. IEEE Transactions on Dielectrics & Electrical Insulation, 22(5):2424--2427, 2015.
[35]
L. Shangguan, Z. Zhou, and K. Jamieson. Enabling gesture-based interactions with objects. In MobiSys, pages 239--251. ACM, 2017.
[36]
C. Shi, J. Liu, H. Liu, and Y. Chen. Smart user authentication through actuation of daily activities leveraging wifi-enabled iot. In Mobihoc, page 5. ACM, 2017.
[37]
J. R. Wait. Electromagnetic Wave Theory. Higher Education Press, 2002.
[38]
G. Wang, C. Qian, J. Han, W. Xi, H. Ding, Z. Jiang, and J. Zhao. Verifiable smart packaging with passive rfid. In UbiComp, pages 156--166. ACM, 2016.
[39]
J. Wang, O. Abari, and S. Keshav. Challenge: Rfid hacking for fun and profit. sensors, 3(14):15, 2018.
[40]
J. Wang, H. Jiang, J. Xiong, K. Jamieson, X. Chen, D. Fang, and B. Xie. Lifs: low human-effort, device-free localization with fine-grained subcarrier information. In MobiCom, pages 243--256. ACM, 2016.
[41]
J. Wang and D. Katabi. Dude, where's my card?: Rfid positioning that works with multipath and non-line of sight. SIGCOMM, 43(4):51--62, 2013.
[42]
J. Wang, J. Xiong, X. Chen, H. Jiang, R. K. Balan, and D. Fang. Tagscan: Simultaneous target imaging and material identification with commodity rfid devices. In MobiCom. ACM, 2017.
[43]
B. H. Waters, A. P. Sample, and J. R. Smith. Adaptive impedance matching for magnetically coupled resonators based on passive uhf rfid. In PIERS Proceedings, pages 694--701. Citeseer, 2012.
[44]
T. Wei and X. Zhang. mtrack: High-precision passive tracking using millimeter wave radios. In MobiCom, pages 117--129. ACM, 2015.
[45]
T. Wei and X. Zhang. Gyro in the air: tracking 3d orientation of batteryless internet-of-things. In MobiCom, pages 55--68. ACM, 2016.
[46]
J. Xiong, K. Sundaresan, and K. Jamieson. Tonetrack: Leveraging frequency-agile radios for time-based indoor wireless localization. In MobiCom, pages 537--549. ACM, 2015.
[47]
L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: Real-time tracking of mobile rfid tags to high precision using cots devices. In MobiCom, pages 237--248. ACM, 2014.
[48]
L. Yang, Y. Li, Q. Lin, X. Y. Li, and Y. Liu. Making sense of mechanical vibration period with sub-millisecond accuracy using backscatter signals. In MobiCom, pages 16--28. ACM, 2016.
[49]
H.-S. Yeo, G. Flamich, P. Schrempf, D. Harris-Birtill, and A. Quigley. Radarcat: Radar categorization for input & interaction. In UIST, pages 833--841. ACM, 2016.
[50]
S. Yun, Y.-C. Chen, H. Zheng, L. Qiu, and W. Mao. Strata: Fine-grained acoustic-based device-free tracking. In MobiSys, pages 15--28. ACM, 2017.
[51]
C. Zhang and X. Zhang. Pulsar: Towards ubiquitous visible light localization. In MobiCom, pages 33--35. ACM, 2017.
[52]
O. Zhang and K. Srinivasan. Mudra: User-friendly fine-grained gesture recognition using wifi signals. In CoNEXT, pages 83--96. ACM, 2016.
[53]
Z. Zhao, J. Wang, X. Zhao, C. Peng, Q. Guo, and B. Wu. Navilight: Indoor localization and navigation under arbitrary lights. In INFOCOM, pages 1--9. IEEE, 2017.
[54]
Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng. Reusing 60ghz radios for mobile radar imaging. In MobiCom, pages 103--116. ACM, 2015.

Cited By

View all
  • (2024)Poster Abstract: Liquid Identification via Container Acoustic ResonanceProceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems10.1145/3666025.3699403(851-852)Online publication date: 4-Nov-2024
  • (2024)ASLiquid: Non-Intrusive Liquid Counterfeit Identification with Your EarphonesProceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems10.1145/3666025.3699321(41-53)Online publication date: 4-Nov-2024
  • (2024)Enabling 6D Pose Tracking on Your Acoustic DevicesProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661875(15-28)Online publication date: 3-Jun-2024
  • Show More Cited By

Index Terms

  1. Tagtag: material sensing with commodity RFID

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SenSys '19: Proceedings of the 17th Conference on Embedded Networked Sensor Systems
    November 2019
    472 pages
    ISBN:9781450369503
    DOI:10.1145/3356250
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 November 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. RFID
    2. antenna impedance
    3. conductive liquid
    4. material sensing
    5. tag

    Qualifiers

    • Research-article

    Conference

    Acceptance Rates

    Overall Acceptance Rate 174 of 867 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)217
    • Downloads (Last 6 weeks)29
    Reflects downloads up to 18 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Poster Abstract: Liquid Identification via Container Acoustic ResonanceProceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems10.1145/3666025.3699403(851-852)Online publication date: 4-Nov-2024
    • (2024)ASLiquid: Non-Intrusive Liquid Counterfeit Identification with Your EarphonesProceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems10.1145/3666025.3699321(41-53)Online publication date: 4-Nov-2024
    • (2024)Enabling 6D Pose Tracking on Your Acoustic DevicesProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661875(15-28)Online publication date: 3-Jun-2024
    • (2024)LiquImagerProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36435098:1(1-29)Online publication date: 6-Mar-2024
    • (2024)RF-Egg: An RF Solution for Fine-Grained Multi-Target and Multi-Task Egg Incubation SensingProceedings of the 30th Annual International Conference on Mobile Computing and Networking10.1145/3636534.3649378(528-542)Online publication date: 29-May-2024
    • (2024)Gastag: A Gas Sensing Paradigm using Graphene-based TagsProceedings of the 30th Annual International Conference on Mobile Computing and Networking10.1145/3636534.3649365(342-356)Online publication date: 29-May-2024
    • (2024)WiProfile: Unlocking Diffraction Effects for Sub-Centimeter Target Profiling Using Commodity WiFi DevicesProceedings of the 30th Annual International Conference on Mobile Computing and Networking10.1145/3636534.3649355(185-199)Online publication date: 29-May-2024
    • (2024)Wi-PainterProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36338097:4(1-25)Online publication date: 12-Jan-2024
    • (2024)Water Salinity Sensing with UAV-Mounted IR-UWB RadarACM Transactions on Sensor Networks10.1145/363351520:4(1-37)Online publication date: 11-May-2024
    • (2024)FSS-TagProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314577:4(1-24)Online publication date: 12-Jan-2024
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media