Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/335603.335704acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
Article
Free access

A parallel algorithm for nonlinear Volterra integro-differential equations

Published: 19 March 2000 Publication History
First page of PDF

References

[1]
Akl, $.G.(1989)Design .. and Analysis of Parallel Algo_n'_t_hms,Prentice-Hall,New Jersey.
[2]
Cooper, G.J. & Vignesvaran, R.(1993)On the use of parallel processors for implicit Runge-Kutta methods,Computing 51, 135-150.
[3]
Crisci, M.R.(1994)ParaUel frontal methods for ODEs, BiT 34,215-227.
[4]
Crisci, M.R., van der Houwen, P.J., Russo, E. & Vecchio, A.(1993)Stability of Parallel Volterra Runge- Kutta methods,J.of CAM 45,169-180.
[5]
Cushing, J.M.(1977)lnte~'rodiffer~ntia! eauat!o~n_s and delay models in 0opulation dvnamics,Springer- Verlag,Heidelberg.
[6]
Elliott, C.M. & McKee, S.(1981)On the numerical solution of an integro.differential equation arising from wave-power hydraulics,BIT 21,318-325.
[7]
Garey,L.E.,(1975)Step.by-step methods for the numerical solution of Vo#erra inlegro-differenfial equations, 5th Manitoba Conf. Numer. Math.,319-329.
[8]
Goldmann, M.(1988)Vectorization of the multiple shooting method for the nonlinear boundary value problem in ordinary differential equations,Parallel Computing 7,97-110.
[9]
Khalaf, B.M.S. & Hutchinson, D.(1992)Paraitel algorithms for initial value problems: parallel shooting,Parallel Computing 18,661-673.
[10]
Linz,P.(1969)Linear muir!step methods for Voherra integro-differentiat equations, Journal of the Assoc. for Comp. Mach., vol. 16,no.2,295-301.
[11]
London,S.O.(1969)On a nonlinear Volterra integrodifferential equation, Conun. Phys. Math. 38,5-11.
[12]
Miller,R.K.(1966)On Volterra's population equation,SIAM J. Appl. Math. 14,446-452.
[13]
Shaw, R.E.(1985)Numerical Solutions and Simole Roots thesis,UNB.
[14]
$haw,R.E.(1996)Vectorizing multistep methods for Volterra integro-differential equations, Inter. J. High Speed Computing, vol.8,no.2,137-144.
[15]
Shaw, R.E. &Garey, L.E.(1993)Vector processing an iterative method for nonlinear second order Volterra integro-differential equations with two point boundary conditions,Congress Numerantium, vol.92,129-135.
[16]
Sommeijer, B.P., Couzy, W. & van der Houwen, and inregro-differential equations, Appl. Numer. M ath,vol.9,267-281.
[17]
Tam, H. & Skeel, R.D.(1993)Stability of parallel explicit ODE methods, SIAM J. Numer. AnaL, vol.30,no.4,1179-1192.
[18]
van der Houwen, P.J .& Sommeijer, B.P. (199 l)Iterated Runge-Kutta methods on parallel computers, SIAM J. Sci. Statist. Comput. 12,1991, 1000- t 028.
[19]
van der Houwen, P.J., Sommeijer, B.P. & de Swart, J. J. B. (1994)Parallelpredictor-corrector methods, CW! Report,Dept. of Numer. Math., Report NM-R9408.
[20]
van der Houwen, P.J., Sommeijer, B.P. & van der Veen, W.A.(! 993)Parallel iteration across the steps of high order Runge.Kutta methods for nonstiff initial value problems,CWI Rpt, Dept. N umer. M ath.,Rpt N M-R9313.
[21]
Vecchio,A.(1993)Highly stable parallel Volterra Runge-Kutta methods,Istituto per Applicazioni Della Matematica, Consiglio Nazionale Delle Ricerche,via P. Castellino, II 1,80131 Napoli,ltaly,Rapp. Tecnico n. t 02.

Cited By

View all
  • (2012)Parallel method using MPI for solving large systems of delay differential equations2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER)10.1109/CHUSER.2012.6504320(255-259)Online publication date: Dec-2012

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SAC '00: Proceedings of the 2000 ACM symposium on Applied computing - Volume 1
March 2000
536 pages
ISBN:1581132409
DOI:10.1145/335603
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 March 2000

Permissions

Request permissions for this article.

Check for updates

Author Tag

  1. Volterra integro-differential equation parallel algorithm

Qualifiers

  • Article

Conference

SAC00
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,650 of 6,669 submissions, 25%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)18
  • Downloads (Last 6 weeks)3
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2012)Parallel method using MPI for solving large systems of delay differential equations2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER)10.1109/CHUSER.2012.6504320(255-259)Online publication date: Dec-2012

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media