Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3232059.3232063acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbtConference Proceedingsconference-collections
research-article

Forces Calculation Module for the Leap-Based Virtual Glove

Published: 16 May 2018 Publication History

Abstract

Hand rehabilitation is fundamental after stroke or surgery. Traditional rehabilitation implies high costs, stress for the patient, and subjective evaluation of the therapy effectiveness. Mechanical devices based approaches are often expensive, cumbersome and patient specific, while tracking-based devices are not affected by these limitations, though they could suffer from occlusions. In recent works, the procedure used for implementing a multi-sensors approach, the Virtual Glove (VG), based on the simultaneous use of two orthogonal LEAP motion controllers, was described. In this paper, an engineered version of VG was calibrated and measurements were performed. This article presents a model extension to be used for the off-line calculation of the hand kinematics and of the flexion/extension forces exerted by each finger when constrained by calibrated elastic tools.

References

[1]
B. Kopp, A. Kunkel, W. Mnickel, K. Villringer, E. Taub, and H. Flor, Plasticity in the motor system related to therapy-induced improvement of movement after stroke, Neuroreport, vol. 10, no. 4, pp. 807-810, 1999.
[2]
J. Liepert, H. Bauder, W. H. R. Miltner, E. Taub, and C. Weiller, Treatment-induced cortical reorganization after stroke in humans, Stroke, vol. 31, no. 6, pp. 1210-1216, 2000.
[3]
M. Hallett, Plasticity of the human motor cortex and recovery from stroke, Brain Research Reviews, vol. 36, no. 2, pp. 169-174, 2001.
[4]
K. N. Arya, S. Pandian, R. Verma, and R. K. Garg, Movement therapy induced neural reorganization and motor recovery in stroke: a review, Journal of bodywork and movement therapies, vol. 15, no. 4, pp. 528-537, 2011.
[5]
L. E. Kahn, M. Averbuch, W. Z. Rymer, and D. J. Reinkensmeyer, Comparison of robot-assisted reaching to free reaching in promoting recovery from chronic stroke, in: Integration of Assistive Technology in the Information Age, Proceedings of 7th International Conference on Rehabilitation Robotics, IOSPress, pp. 39-44, 2001
[6]
L. E. Kahn, P. S. Lum, W. Z. Rymer, and D. J. Reinkensmeyer, Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J. Rehabil. Res. Dev. Vol. 43, no 5, pp. 619-630, 2006.
[7]
C. G. Burgar, P. S. Lum, P. C. Shor, and H. F. M. V. der Loos, Development of robots for rehabilitation therapy: the Palo Alto, VA/Stanford experience, J. Rehabil. Res. Dev., vol. 37, no 6, pp. 663-673, 2000.
[8]
A. S. Merians, E. Tunik, and S. V. Adamovich, Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms, Stud. Health Technol. Inf., vol 145, pp. 109-125, 2009.
[9]
S. Bisconti, M. Spezialetti, G. Placidi, and V. Quaresima, Functional near-infrared frontal cortex imaging for virtual reality neuro-rehabilitation assessment, in Computational Modelling of Objects Represented in Images, pp. 187-192, Taylor & Francis, 2012.
[10]
M. Spezialetti, D. Avola, G. Placidi, and G. De Gasperis, Movement analysis based on virtual reality and 3D depth sensing camera for whole body rehabilitation, in Computational Modelling of Objects Represented in Images, pp. 367-372, Taylor & Francis, 2012.
[11]
D. Avola, M. Spezialetti, and G. Placidi, Design of an efficient framework for fast prototyping of customized human computer interfaces and virtual environments for rehabilitation, Computer Methods and Programs in Biomedicine, vol. 110, no. 3, pp. 490-502, 2013.
[12]
G. Placidi, D. Avola, M. Ferrari, D. Iacoviello, A. Petracca, V. Quaresima, and M. Spezialetti, A low-cost real time virtual system for postural stability assessment at home, Computer methods and programs in biomedicine, vol. 117, no. 2, pp. 322-333, 2014.
[13]
S. Basso Moro, S. Bisconti, M. Muthalib, M. Spezialetti, S. Cutini, M. Ferrari, G. Placidi, and V. Quaresima, A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: A functional near-infrared spectroscopy study, Neuroimage, vol. 85, pp. 451-460, 2014.
[14]
M. Ferrari, S. Bisconti, M. Spezialetti, S. Basso Moro, C. Di Palo, G. Placidi, and V. Quaresima, Prefrontal Cortex Activated Bilaterally by a Tilt Board Balance Task: A Functional Near-Infrared Spectroscopy Study in a Semi-Immersive Virtual Reality Environment, Brain Topogr., vol. 27, pp. 353-365, 2014.
[15]
G. Placidi, A. Petracca, N. Pagnani, M. Spezialetti, and D. Iacoviello, A virtual system for postural stability assessment based on a tof camera and a mirror, in Proceedings of the 3rd 2015 Workshop on ICTs for Improving Patients Rehabilitation Research Techniques, pp. 77-80, 2015.
[16]
M. C. Howard, A meta-analysis and systematic literature review of virtual reality rehabilitation programs, Computers in Human Behavior, vol 70, pp. 317-327, 2017.
[17]
A. S. Merians, J. David, B. Rares, M. Tremaine, G. C. Burdea, S. V. Adamovich, M. Recce, H. Poizner, Virtual reality-augmented rehabilitation for patients following stroke, J. Am. Phys. Ther. Assoc., vol. 82, no. 9, pp. 898-915, 2002.
[18]
C. Systems, Cyber grasp glove, http://www.cyberglovesystems.com/products/cybergrasp/.
[19]
M. Bouzit, Design, Implementation and Testing of a Data Glove with Force Feedback for Virtual and Real Objects Telemanipulation, Ph.D.Thesis, University of Pierre Et Marie Curie, Paris, France, 1996
[20]
G. Placidi, A smart virtual glove for the hand telerehabilitation, Comput.Biol. Med., vol 37, pp. 1100-1107, 2007.
[21]
D. Franchi, A. Maurizi, G. Placidi, A numerical hand model for a virtual glove rehabilitation system, in Proceedings of the 2009 IEEE International Work-shop on Medical Measurements and Applications, MEMEA'09, IEEEComputer Society, Washington, DC, USA, pp.41-44, 2009.
[22]
D. Franchi, A. Maurizi, G. Placidi, Characterization of a simmechanics model for a virtual glove rehabilitation system, in CompIMAGE, pp.141-150, 2010.
[23]
A. Aristidou, J. Lasenby, Motion capture with constrained inverse kinematics for real-time hand tracking, in Proceedings of the 4th International Symposium on Communications, Control and Signal Processing, IEEE-ISCCSP'10, pp.1-5, 2010.
[24]
A. Chaudhary, J. L. Raheja, K. Das, S. Raheja, Intelligent approaches to interact with machines using hand gesture recognition in natural way: a survey, Int. J. Comput. Sci. Eng. Survey (IJCSES), vol. 2, no. 1, pp. 122-133, 2011.
[25]
Z. Rusak, C. Antonya, I. Horvath, Methodology for controlling contact forces in interactive grasping simulation, Int. J. Virtual Reality, vol. 10, no. 2, pp. 1-10, 2011
[26]
D. Charles, K. Pedlow, S. McDonough, K. Shek, and T. Charles, Close range depth sensing cameras for virtual reality based hand rehabilitation, Journal of Assistive Technologies, vol. 8, no. 3, pp. 138-149, 2014.
[27]
Leap motion, http://www.leapmotion.com.
[28]
F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler, Analysis of the accuracy and robustness of the leap motion controller, Sensors, vol. 13, pp. 6380-6393, 2013.
[29]
J. Guna, G. Jakus, M. Pogačnik, S. Tomažič, and J. Sodnik, An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking, Sensors, vol 14, pp. 3702-3720, 2014.
[30]
D. Bachmann, F, Weichert, and G. Rinkenauer, Evaluation of the LeapMotion Controller as aNewContact-Free Pointing Device, Sensors, vol. 15, p. 214, 2015.
[31]
S. Basso Moro, M. Carrieri, D. Avola, S. Brigadoi, S. Lancia, A. Petracca, M. Spezialetti, M. Ferrari, G. Placidi, and V. Quaresima, A novel semi-immersive virtual reality visuo-motor task for upper limb neurorehabilitation activates ventrolateral prefrontal cortex: a functional near-infrared spectroscopy study, J Neural Eng., vol 13, no3, p. 036002, 2016.
[32]
M. Carrieri, A. Petracca, S. Lancia, S. Basso Moro, S. Brigadoi, M. Spezialetti, M. Ferrari, G. Placidi, and V. Quaresima, Prefrontal cortex activation upon a demanding virtual hand-controlled task: a new frontier for neuroergonomics, Front Hum Neurosci; vol. 16, pp. 10-53, 2016.
[33]
A. Petracca, M. Carrieri, D. Avola, S. Basso Moro, S. Brigadoi, S. Lancia, M. Spezialetti, M. Ferrari, V. Quaresima, and G. Placidi, A virtual ball task driven by forearm movements for neuro-rehabilitation, in Proceedings of 2015 International Conference on Virtual Rehabilitation (ICVR), pp. 162-163, 2015.
[34]
G. Placidi, L. Cinque, A. Petracca, M. Polsinelli, and M. Spezialetti, A Virtual Glove System for the Hand Rehabilitation based on Two Orthogonal LEAP Motion Controllers, in Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods ICPRAM, vol. 1, pp. 184-192, 2017.
[35]
Simscape Mulibody, https://mathworks.com/products/simmechanics.html
[36]
P. J. Besl, and N. D. McKay, A Method for Registration of 3-D Shapes, IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, pp. 239-256, 1992.
[37]
D. W. Eggert, A. Lorusso, and R. B. Fisher, Estimating 3-D rigid body transformations: a comparison of four major algorithms, Machine Vision and Applications, vol. 9, pp. 272-290, 1997.
[38]
G. Placidi, D. Avola, D. Iacoviello, and L. Cinque, Overall design and implementation of the virtual glove, Computers in biology and medicine, vol. 43, pp. 1927-1940, 2013

Index Terms

  1. Forces Calculation Module for the Leap-Based Virtual Glove

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICBBT '18: Proceedings of the 2018 10th International Conference on Bioinformatics and Biomedical Technology
    May 2018
    93 pages
    ISBN:9781450363662
    DOI:10.1145/3232059
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    In-Cooperation

    • Universidade Nova de Lisboa

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 16 May 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Hand rehabilitation
    2. Hand tracking
    3. LEAP motion controller
    4. Virtual glove

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    ICBBT '18

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 70
      Total Downloads
    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 07 Mar 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media