Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Public Access

Settling the Query Complexity of Non-adaptive Junta Testing

Published: 26 November 2018 Publication History

Abstract

We prove that any non-adaptive algorithm that tests whether an unknown Boolean function f:{0,1}n→ {0,1} is a k-junta or ϵ-far from every k-junta must make Ω˜(k3/2) / ϵ) many queries for a wide range of parameters k and ϵ. Our result dramatically improves previous lower bounds and is essentially optimal since there is a known non-adaptive junta tester which makes Ω˜(k3/2) / ϵ queries. Combined with the known existence of an adaptive tester which makes O(klog k + k /ϵ) queries, our result shows that adaptivity enables polynomial savings in query complexity for junta testing.

References

[1]
José A. Adell and Pedro Jodrá. 2006. Exact Kolmogorov and total variation distances between some familiar discrete distributions. J. Inequal. Appl. 2006, 1 (2006), 1--8.
[2]
N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. 2005. Testing Reed-Muller codes. IEEE Trans. Inform. Theor. 51, 11 (2005), 4032--4039.
[3]
Roksana Baleshzar, Meiram Murzabulatov, Ramesh Krishnan S. Pallavoor, and Sofya Raskhodnikova. 2016. Testing unateness of real-valued functions. CoRR abs/1608.07652 (2016).
[4]
A. Belovs and E. Blais. 2016. A polynomial lower bound for testing monotonicity. In Proceedings of the 48th ACM Symposium on Theory of Computing (STOC'16). ACM, 1021--1032.
[5]
Arthur J. Bernstein. 1967. Maximally connected arrays on the n-cube. SIAM J. Appl. Math. 15, 6 (1967), 1485--1489.
[6]
Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David Zuckerman. 2010. Optimal testing of Reed-Muller codes. In 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS’10). IEEE Computer Society, 488--497.
[7]
Eric Blais. 2008. Improved bounds for testing juntas. In Proceedings of the 12th International Workshop on Randomization (RANDOM'08). Springer, 317--330.
[8]
Eric Blais. 2009. Testing juntas nearly optimally. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC’09). ACM, 151--158.
[9]
Eric Blais, Joshua Brody, and Kevin Matulef. 2011. Property testing lower bounds via communication complexity. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity (CCC'11). IEEE Computer Society, 210--220.
[10]
Eric Blais and Daniel M. Kane. 2012. Tight bounds for testing k-linearity. In Proceedings of the 16th International Workshop on Randomization (RANDOM'12). Springer, 435--446.
[11]
M. Blum, M. Luby, and R. Rubinfeld. 1993. Self-testing/correcting with applications to numerical problems. J. Comput. Syst. Sci. 47, 3 (1993), 549--595.
[12]
Harry Buhrman, David García-Soriano, Arie Matsliah, and Ronald de Wolf. 2013. The non-adaptive query complexity of testing k-parities. Chicago J. Theor. Comput. Sci. Article 06 (2013), 1--11.
[13]
Deeparnab Chakrabarty and C. Seshadhri. 2013. A o(n) monotonicity tester for boolean functions over the hypercube. In Proceedings of the 45th ACM Symposium on Theory of Computing (STOC'13). ACM, 411--418.
[14]
Deeparnab Chakrabarty and C. Seshadhri. 2016. A Õ(n) non-adaptive tester for unateness. CoRR abs/1608.06980 (2016).
[15]
Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. 2015. Boolean function monotonicity testing requires (almost) n<sup>1/2</sup> non-adaptive queries. In Proceedings of the 47th ACM Symposium on Theory of Computing (STOC'15). ACM, 519--528.
[16]
X. Chen, R. Servedio, and L.-Y. Tan. 2014. New algorithms and lower bounds for testing monotonicity. In Proceedings of the 55th IEEE Symposium on Foundations of Computer Science (FOCS'14). IEEE Computer Society, 286--295.
[17]
H. Chockler and D. Gutfreund. 2004. A lower bound for testing juntas. Inform. Process. Lett. 90, 6 (2004), 301--305.
[18]
I. Diakonikolas, H. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. Servedio, and A. Wan. 2007. Testing for concise representations. In Proceedings of the 48th Annual Symposium on Computer Science (FOCS’07). IEEE Computer Society, 549--558.
[19]
D. Dubhashi and A. Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge.
[20]
E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky. 2004. Testing juntas. J. Comput. Syst. Sci. 68, 4 (2004), 753--787.
[21]
E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky. 2002. Monotonicity testing over general poset domains. In Proceedings of the 34th Annual ACM Symposium on the Theory of Computing. ACM, 474--483.
[22]
Peter Frankl. 1983. On the trace of finite sets. J. Comb. Theor. Ser. A 34, 1 (1983), 41--45.
[23]
O. Goldreich (Ed.). 2010. Property Testing: Current Research and Surveys. LNCS 6390. Springer.
[24]
Oded Goldreich. 2017. Introduction to Property Testing. Cambridge University Press.
[25]
O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. 2000. Testing monotonicity. Combinatorica 20, 3 (2000), 301--337.
[26]
P. Gopalan, R. O’Donnell, R. Servedio, A. Shpilka, and K. Wimmer. 2011. Testing fourier dimensionality and sparsity. SIAM J. on Computing 40, 4 (2011), 1075--1100.
[27]
Larry H. Harper. 1964. Optimal assignments of numbers to vertices. SIAM J. Appl. Math. 12, 1 (1964), 131--135.
[28]
Sergiu Hart. 1976. A note on the edges of the n-cube. Disc. Math. 14, 2 (1976), 157--163.
[29]
Subhash Khot, Dor Minzer, and Muli Safra. 2015. On monotonicity testing and Boolean isoperimetric type theorems. In Proceedings of the 56th Annual Symposium on Foundations of Computer Science (FOCS'15). IEEE Computer Society, 52--58.
[30]
Subhash Khot and Igor Shinkar. 2016. An O(n) queries adaptive tester for unateness. In Approximation, Randomization, and Combinatorial Optimization Algorithms and Techniques. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 37:1--37:7.
[31]
J. H. Lindsey. 1964. Assignment of numbers to vertices. Amer. Math. Monthly 71, 5 (1964), 508--516.
[32]
K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. 2010. Testing halfspaces. SIAM J. on Comput. 39, 5 (2010), 2004--2047.
[33]
Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. 2009. Testing ± 1-weight halfspace. In Proceedings of the 13th International Workshop on Randomization (RANDOM'09). Springer, 646--657.
[34]
M. Parnas, D. Ron, and A. Samorodnitsky. 2002. Testing basic boolean formulae. SIAM J. Disc. Math. 16, 1 (2002), 20--46.
[35]
D. Ron. 2008. Property testing: A learning theory perspective. Foundations and Trends in Machine Learning 1, 3 (2008), 307--402.
[36]
D. Ron. 2010. Algorithmic and analysis techniques in property testing. Found. Trends Theor. Comput. Sci. 5, 2 (2010), 73--205.
[37]
D. Ron and R. Servedio. 2013. Exponentially improved algorithms and lower bounds for testing signed majorities. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'13). SIAM, 1319--1336.
[38]
Dana Ron and Gilad Tsur. 2011. Testing Computability by Width-Two OBDDs. Technical Report 11(041). Electronic Colloquium on Computational Complexity (ECCC). available at http://eccc.hpi-web.de/report/2011/041/.
[39]
B. Roos. 2000. Binomial approximation to the Poisson binomial distribution: The Krawtchouk expansion. Theory Probab. Appl. 45, 2 (2000), 328--344.
[40]
Rocco Servedio, Li-Yang Tan, and John Wright. 2015. Adaptivity helps for testing juntas. In Proceedings of the 30th Conference on Computational Complexity (CCC'15). Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 264--279.

Cited By

View all
  • (2024)Optimal Non-adaptive Tolerant Junta Testing via Local EstimatorsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649687(1039-1050)Online publication date: 10-Jun-2024
  • (2024)Algorithms for Cardinality-Constrained Monotone DR-Submodular Maximization with Low Adaptivity and Query ComplexityJournal of Optimization Theory and Applications10.1007/s10957-023-02353-7200:1(194-214)Online publication date: 1-Jan-2024
  • (2023)An adaptive algorithm for maximization of non-submodular function with a matroid constraintJournal of Industrial and Management Optimization10.3934/jimo.202203119:3(2050-2070)Online publication date: 2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 65, Issue 6
December 2018
331 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/3293435
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 November 2018
Accepted: 01 July 2018
Revised: 01 April 2018
Received: 01 September 2017
Published in JACM Volume 65, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Property testing
  2. adaptivity
  3. juntas

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • NSF
  • NSF Graduate Research Fellowship

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)108
  • Downloads (Last 6 weeks)18
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Optimal Non-adaptive Tolerant Junta Testing via Local EstimatorsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649687(1039-1050)Online publication date: 10-Jun-2024
  • (2024)Algorithms for Cardinality-Constrained Monotone DR-Submodular Maximization with Low Adaptivity and Query ComplexityJournal of Optimization Theory and Applications10.1007/s10957-023-02353-7200:1(194-214)Online publication date: 1-Jan-2024
  • (2023)An adaptive algorithm for maximization of non-submodular function with a matroid constraintJournal of Industrial and Management Optimization10.3934/jimo.202203119:3(2050-2070)Online publication date: 2023
  • (2023)New Lower Bounds for Adaptive Tolerant Junta Testing2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00108(1778-1786)Online publication date: 6-Nov-2023
  • (2023)A strong composition theorem for junta complexity and the boosting of property testers2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00107(1757-1777)Online publication date: 6-Nov-2023
  • (2021)Junta distance approximation with sub-exponential queriesProceedings of the 36th Computational Complexity Conference10.4230/LIPIcs.CCC.2021.24Online publication date: 20-Jul-2021
  • (2021)Approximating the distance to monotonicity of Boolean functionsRandom Structures & Algorithms10.1002/rsa.2102960:2(233-260)Online publication date: 24-Jun-2021
  • (2020)Quantum and classical query complexities for generalized Deutsch–Jozsa problemsQuantum Information Processing10.1007/s11128-020-02652-219:5Online publication date: 25-Mar-2020

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media