Runtime analysis of evolutionary algorithms: basic introduction
References
Recommendations
Use of the q-Gaussian mutation in evolutionary algorithms
Special issue on advances in computational intelligence and bioinformaticsThis paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed ...
Population size versus runtime of a simple evolutionary algorithm
Evolutionary algorithms (EAs) find numerous applications, and practical knowledge on EAs is immense. In practice, sophisticated population-based EAs employing selection, mutation and crossover are applied. In contrast, theoretical analysis of EAs often ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Sponsors
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Qualifiers
- Tutorial
Conference
Acceptance Rates
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 90Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in