ACO-FFDP in incremental clustering for big data analysis
Abstract
References
Recommendations
Aggregation pheromone density based data clustering
Ants, bees and other social insects deposit pheromone (a type of chemical) in order to communicate between the members of their community. Pheromone, that causes clumping or clustering behavior in a species and brings individuals into a closer proximity,...
Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering
Ant colony optimization (ACO) and particle swarm optimization (PSO) are two popular algorithms in swarm intelligence. Recently, a continuous ACO named ACOR was developed to solve the continuous optimization problems. This study incorporated ACOR with ...
Dynamic Incremental K-means Clustering
CSCI '14: Proceedings of the 2014 International Conference on Computational Science and Computational Intelligence - Volume 01K-means clustering is one of the most commonly used methods for classification and data-mining. When the amount of data to be clustered is "huge," and/or when data becomes available in increments, one has to devise incremental K-means procedures. ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
- Research
- Refereed limited
Conference
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 51Total Downloads
- Downloads (Last 12 months)1
- Downloads (Last 6 weeks)0
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in