Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3284566.3284574acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

An Integrated Visual Analytics Framework for Spatiotemporal Data

Published: 06 November 2018 Publication History

Abstract

Visual analytics 1 for spatiotemporal data is an essential issue in shown the patterns of the spatial data mining results. To deal with challenges caused by dynamic spatiotemporal data require efficient visual analytics that visualizes real-time and dynamic spatial data. We proposed and implemented an integrated visual analytics framework. It integrated open source map library, visual library, and modern web development technology. It made use of Spark Streaming in real-time data processing while real-time mapping results on the DataFlowLayer. Visual analytics framework for dynamic objects is built based on high-performance processing and hardware mixed acceleration strategies. Benchmark experiments showed that it achieved excellent performance for visualizing spatiotemporal data.

References

[1]
Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S. I., ... and Tominski, C. 2010. Space, time and visual analytics. International Journal of Geographical Information Science, 24(10), 1577--1600.
[2]
Kim, K. S., Kim, D., Jeong, H., and Ogawa, H. 2017. Stinuum: A holistic visual analysis of moving objects with open source software. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (p. 85). ACM.
[3]
Andrienko, G., Andrienko, N., Fuchs, G., and Wood, J. 2017. Revealing patterns and trends of mass mobility through spatial and temporal abstraction of origin-destination movement data. IEEE transactions on visualization and computer graphics, 23(9), 2120--2136.
[4]
Liono, J., Salim, F. D., and Subastian, I. F. 2015, October. Visualization oriented spatiotemporal urban data management and retrieval. In Proceedings of the ACM First International Workshop on Understanding the City with Urban Informatics (pp. 21--26). ACM.
[5]
OpenLayers Homepage, https://openlayers.org/, last accessed 2018/09/04.
[6]
Leaflet Homepage, https://leafletjs.com/, last accessed 2018/09/04.
[7]
Mapbox GL Homepage, https://www.mapbox.com/mapbox-gl-js/api/, last accessed 2018/06/04.
[8]
D3 Homepage, https://d3js.org/, last accessed 2018/09/04/
[9]
Echarts Homepage, http://echarts.baidu.com/, last accessed 2018/09/04.
[10]
Mapv Homepage, http://mapv.baidu.com/, last accessed 2018/06/04.
[11]
Eldawy, A., Mokbel, M. F., and Jonathan, C. 2016. HadoopViz: A MapReduce framework for extensible visualization of big spatial data. In Data Engineering (ICDE), 2016 IEEE 32nd International Conference on (pp. 601--612). IEEE.
[12]
Kim, S., Jeong, S., Woo, I., Jang, Y., Maciejewski, R., and Ebert, D. 2017. Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information. IEEE transactions on visualization and computer graphics.24(3), 1287--1300.
[13]
Demšar, U., and Virrantaus, K. 2010. Space-time density of trajectories: exploring spatio-temporal patterns in movement data. International Journal of Geographical Information Science, 24(10), 1527--1542.
[14]
Ferreira, N., Poco, J., Vo, H. T., Freire, J., and Silva, C. T. 2013. Visual exploration of big spatio-temporal urban data: A study of new york city taxi trips. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2149--2158.
[15]
Adrienko, N., and Adrienko, G. 2011. Spatial generalization and aggregation of massive movement data. IEEE Transactions on visualization and computer graphics, 17(2), 205--219.
[16]
Shekhar, S., Gunturi, V., Evans, M. R. and Yang, K. Spatial big-data challenges intersecting mobility and cloud computing. ACM, City, 2012.
[17]
Salmon, L. and Ray, C. Design principles of a stream-based framework for mobility analysis. GeoInformatica, 21, 2 (2017), 237--261.
[18]
Ray, S., Blanco, R. and Goel, A. K. High performance location-based services in a main-memory database. GeoInformatica, 21, 2 (2017), 293--322.
[19]
Galić, Z., Baranović, M., Križanović, K. and Mešković, E. Geospatial data streams: Formal framework and implementation. Data & Knowledge Engineering, 91 (2014), 1--16.
[20]
Sethu, M. A. B. C. B. and Katibah, R. E. Spatio-temporal stream processing in microsoft streaminsight. Data Engineering (2010), 69.
[21]
Kazemitabar, S. J., Demiryurek, U., Ali, M., Akdogan, A. and Shahabi, C. Geospatial stream query processing using Microsoft SQL Server StreamInsight. Proceedings of the VLDB Endowment, 3, 1-2 (2010), 1537--1540.
[22]
Miller, J., Raymond, M., Archer, J., Adem, S., Hansel, L., Konda, S., Luti, M., Zhao, Y., Teredesai, A. and Ali, M. An extensibility approach for spatiotemporal stream processing using Microsoft StreamInsight. Advances in Spatial and Temporal Databases (2011), 496--501.

Cited By

View all
  • (2024)A Visual Analytic Platform for Interactive Validation of Human Mobility SimulationsProceedings of the 7th ACM SIGSPATIAL International Workshop on GeoSpatial Simulation10.1145/3681770.3698570(1-10)Online publication date: 29-Oct-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ARIC'18: Proceedings of the 1st ACM SIGSPATIAL Workshop on Advances on Resilient and Intelligent Cities
November 2018
51 pages
ISBN:9781450360395
DOI:10.1145/3284566
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 November 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Dynamic Objects
  2. Integrated Visual Analytics Framework
  3. Real-time Spatial Data
  4. Spatiotemporal data
  5. SuperMap GIS
  6. iClient

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SIGSPATIAL '18
Sponsor:

Acceptance Rates

Overall Acceptance Rate 10 of 16 submissions, 63%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)9
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Visual Analytic Platform for Interactive Validation of Human Mobility SimulationsProceedings of the 7th ACM SIGSPATIAL International Workshop on GeoSpatial Simulation10.1145/3681770.3698570(1-10)Online publication date: 29-Oct-2024

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media