Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3275116.3275141acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmindtrekConference Proceedingsconference-collections
research-article
Open access

Towards ecosystem for research and development of electrodermal activity applications

Published: 10 October 2018 Publication History

Abstract

Electrodermal activity is one of the most studied psychophysiological markers of the functioning of the autonomic nervous system and it has been applied in psychophysiological research for over 100 years. However, electrodermal activity measurement has not been largely applied in clinical research until now due to it being limited to laboratory environment before the entry of wearable devices. The aim of this study is to speed up research and development of electrodermal activity applications based on wearable device measurements. In order to reach that goal an ecosystem model is proposed that includes open data, open source, application programming interface and software development kit as central components. To illustrate the ecosystem model a case study of Moodmetric is presented.

References

[1]
Argyle, N. 1991. Skin Conductance Levels in Panic Disorder and Depression. The Journal of Nervous and Mental Disease. 179, 9 (Sep. 1991), 563--566.
[2]
Betella, A., Zucca, R., Cetnarski, R., Greco, A., LanatÃ, A., Mazzei, D., Tognetti, A., Arsiwalla, X.D., Omedas, P., De Rossi, D. and Verschure, P.F.M.J. 2014. Inference of human affective states from psychophysiological measurements extracted under ecologically valid conditions. Frontiers in Neuroscience. 8, (Sep. 2014), 286.
[3]
Bianco, V.D., Myllarniemi, V., Komssi, M. and Raatikainen, M. 2014. The Role of Platform Boundary Resources in Software Ecosystems: A Case Study. 2014 IEEE/IFIP Conference on Software Architecture (Apr. 2014), 11--20.
[4]
Biørn-Hansen, A., Majchrzak, T.A. and Grøndi, T.-M. 2018. Progressive Web Apps for the Unified Development of Mobile Applications. Springer, Cham. 64--86.
[5]
Blechert, J., Michael, T., Grossman, P., Lajtman, M. and Wilhelm, F.H. 2007. Autonomic and Respiratory Characteristics of Posttraumatic Stress Disorder and Panic Disorder. Psychosomatic Medicine. 69, 9 (Nov. 2007), 935--943.
[6]
Boucsein, W. 2012. Electrodermal Activity. Springer US.
[7]
Braune, S., Albus, M., Fröhler, M., Höhn, T. and Scheibe, G. 1994. Psychophysiological and biochemical changes in patients with panic attacks in a defined situational arousal. European Archives of Psychiatry and Clinical Neuroscience. 244, 2 (Aug. 1994), 86--92.
[8]
Cowley, B., Filetti, M., Lukander, K., Torniainen, J., Henelius, A., Ahonen, L., Barral, O., Kosunen, I., Valtonen, T., Huotilainen, M., Ravaja, N. and Jacucci, G. 2016. The Psychophysiology Primer: A Guide to Methods and a Broad Review with a Focus on Human--Computer Interaction. Foundations and Trends® in Human--Computer Interaction. 9, 3-4 (2016), 151--308.
[9]
Critchley, H.D. 2002. Review: Electrodermal Responses: What Happens in the Brain. The Neuroscientist. 8, 2 (Apr. 2002), 132--142.
[10]
De, B. 2017. API Management. API Management. Apress. 15--28.
[11]
Dolu, N., Süer, C., Özesmi, Ç., Keleştimur, F. and Eşel, E. 1997. Electrodermal Activity in Nonmedicated Hyperthyroid Patients Having No Depressive Symptoms. Biological Psychiatry. 42, 11 (Dec. 1997), 1024--1029.
[12]
Dolu, N., Süer, C., Özesmi, Ç., Keleştimur, F. and Özcan, Y. 1999. Electrodermal Activity in Hypothyroid Patients and Healthy Subjects. Thyroid. 9, 8 (Aug. 1999), 787--790.
[13]
Dunderfelt, T. 2017. Valoisaksi. Viisas Elämä.
[14]
Evans, P.C. and Basole, R.C. 2016. Revealing the API ecosystem and enterprise strategy via visual analytics. Communications of the ACM. 59, 2 (Jan. 2016), 26--28.
[15]
Förger, K., Himberg, T., Laroche, J. and Bachrach, A. 2018. FSenSync - A software for enabling collaboration between art and science. Hybrid Labs Symposium 2018 (2018), 1.
[16]
Garbarino, M., Lai, M., Bender, D., Picard, R., Tognetti, S. and 2014, undefined 2014. Empatica E3---A wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. Wireless Mobile Communication and Healthcare (Mobihealth) (2014), 39--42.
[17]
Grossman, P., Niemann, L., ... S.S.-J. of psychosomatic and 2004, U. 2004. Mindfulness-based stress reduction and health benefits: A meta-analysis. Journal of psychosomatic research. 57, 1 (2004), 35--34.
[18]
Hartig, T., Mitchell, R., de Vries, S. and Frumkin, H. 2014. Nature and Health. Annual Review of Public Health. 35, 1 (Mar. 2014), 207--228.
[19]
Hoehn, T., Braune, S., Scheibe, G. and Albus, M. 1997. Physiological, biochemical and subjective parameters in anxiety patients with panic disorder during stress exposure as compared with healthy controls. European Archives of Psychiatry and Clinical Neuroscience. 247, 5 (Oct. 1997), 264--274.
[20]
Iansiti, M. and Levien, R. 2004. Strategy as ecology. Harvard business review. 82, 3 (Mar. 2004), 68--78, 126.
[21]
Ilvonen, I., Jussila, J., Karkkainen, H. and Paivarinta, T. 2015. Knowledge Security Risk Management in Contemporary Companies -- Toward a Proactive Approach. 2015 48th Hawaii International Conference on System Sciences (Jan. 2015), 3941--3950.
[22]
Kabat-Zinn, J. 2003. Mindfulness-based stress reduction. Constructivism in the Human Sciences. 8, 2 (2003), 73--107.
[23]
Kappeler-Setz, C., Gravenhorst, F., Schumm, J., Arnrich, B. and Tröster, G. 2013. Towards long term monitoring of electrodermal activity in daily life. Personal and Ubiquitous Computing. 17, 2 (Feb. 2013), 261--271.
[24]
Kenney, M. and Zysman, J. 2016. The rise of the platform economy. Issues in Science and Technology. 32, 3 (2016), 61--69.
[25]
Lader, M.H. and Wing, L. 1964. Habituation of the psycho-galvanic reflex in patients with anxiety states and in normal subjects. Journal of neurology, neurosurgery, and psychiatry. 27, 3 (Jun. 1964), 210--8.
[26]
Lee, Y., Yoon, S., Lee, C. and Lee MH 2006. Wearable EDA sensor gloves using conducting fabric and embedded system. EMBS'06. 28th Annual International Conference of the IEEE (2006), 6785--6788.
[27]
Moilanen, J., Niinioja, M., Seppänen, M. and Honkanen, M. 2018. API-talous 101. Alma Talent Oy.
[28]
Moore, J.F. 1993. Predators and prey: a new ecology of competition. Harvard business review. 71, 3 (1993), 75--86.
[29]
Pantelopoulos, A. and Bourbakis, N.G. 2010. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 40, 1 (Jan. 2010), 1--12.
[30]
Picard, R., Migliorini, M., Caborni, C., Onorati, F., Regalia, G., Friedman, D. and Devinsky, O. 2017. Wrist sensor reveals sympathetic hyperactivity and hypoventilation before probable SUDEP. Neurology. 89, 6 (2017), 633--635.
[31]
Poh, M., Swenson, N. and Picard, R. 2010. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE transactions on Biomedical engineering. 57, 5 (2010), 1243--1252.
[32]
Sandifer, P.A., Sutton-Grier, A.E. and Ward, B.P. 2015. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosystem Services. 12, (Apr. 2015), 1--15.
[33]
Sarén, H. and Uosukainen, L. 2016. Luonnon hyvinvointivaikutukset ja hyvinvointiteknologia matkailun nakokulmasta.
[34]
Setz, C., Arnrich, B., Schumm, J., La Marca, R., Tröster, G. and Ehlert, U. 2010. Discriminating stress from cognitive load using a wearable EDA device. IEEE Transactions on information technology in biomedicine. 14, 2 (2010), 410--417.
[35]
Suoja, K., Liukkonen, J., Jussila, J., Salonius, H., Venho, N., Sillanpää, V., Vuori, V. and Helander, N. 2018. Application for pre-processing and visualization of electrodermal activity wearable data. EMBEC & NBC 2017 (2018), 93--96.
[36]
Suomalainen fitness-sovellus on paljastanut satojen sotilaiden liikkeitä | Long Play: 2018. https://www.longplay.fi/sivuäänet/suomalainen-fitness-sovellus-paljastanut-satojen-sotilaiden-liikkeita. Accessed: 2018-07-08.
[37]
Suominen, A.H., Jussila, J., Lundell, T., Mikkola, M. and Aramo-Immonen, H. 2018. Educational Hackathon: Innovation Contest for Innovation Pedagogy. The ISPIM Innovation Conference -- Innovation, The Name of The Game, 17-20 June 2018. (Stockholm, 2018).
[38]
Thomas, L. and Autio, E. 2012. Modeling the ecosystem: a meta-synthesis of ecosystem and related literatures. DRUID 2012 Conference (Copenhagen, 2012).
[39]
Torniainen, J., Cowley, B., Henelius, A., Lukander, K. and Pakarinen, S. 2015. Feasibility of an electrodermal activity ring prototype as a research tool. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Aug. 2015), 6433--6436.
[40]
Vardasca, R.Â.R. 2011. The effect of work related mechanical stress on the peripheral temperature of the hand. University of Glamorgan.
[41]
Vukovic, M., Srivastava, B., Branch, J.W., Laredo, J., Muthusamy, V., Slominski, A., Vaculin, R., Tan, W., Naik, V., Silva-Lepe, I. and Kumar, A. 2016. Riding and thriving on the API hype cycle. Communications of the ACM. 59, 3 (Feb. 2016), 35--37.
[42]
Ward, N.G., Doerr, H.O. and Storrie, M.C. 1983. Skin conductance: A potentially sensitive test for depression. Psychiatry Research. 10, 4 (Dec. 1983), 295--302.
[43]
Yin, R. 2003. Case study research and applications: Design and methods. SAGE.
[44]
Yin, R.K. 2011. Applications of case study research. SAGE.

Cited By

View all
  • (2024)Noninvasive monitoring technologies to identify discomfort and distressing symptoms in persons with limited communication at the end of life: a scoping reviewBMC Palliative Care10.1186/s12904-024-01371-023:1Online publication date: 21-Mar-2024
  • (2022)Current trends and opportunities in the methodology of electrodermal activity measurementPhysiological Measurement10.1088/1361-6579/ac500743:2(02TR01)Online publication date: 4-Mar-2022
  • (2021)Advancing Stress Detection Methodology with Deep Learning Techniques Targeting UX Evaluation in AAL Scenarios: Applying Embeddings for Categorical VariablesElectronics10.3390/electronics1013155010:13(1550)Online publication date: 26-Jun-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
Mindtrek '18: Proceedings of the 22nd International Academic Mindtrek Conference
October 2018
282 pages
ISBN:9781450365895
DOI:10.1145/3275116
This work is licensed under a Creative Commons Attribution International 4.0 License.

In-Cooperation

  • Tampere University of Technology
  • UTA: The University of Tampere
  • SIGCHI Finland: ACM SIGCHI Finland
  • Tampere University of Applied Sciences

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 October 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Electrodermal activity
  2. application programming interface
  3. ecosystem
  4. galvanic skin response
  5. open data
  6. open source
  7. skin conductance
  8. wearables

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

Mindtrek 2018
Mindtrek 2018: Academic Mindtrek 2018
October 10 - 11, 2018
Tampere, Finland

Acceptance Rates

Mindtrek '18 Paper Acceptance Rate 34 of 68 submissions, 50%;
Overall Acceptance Rate 110 of 207 submissions, 53%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)123
  • Downloads (Last 6 weeks)18
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Noninvasive monitoring technologies to identify discomfort and distressing symptoms in persons with limited communication at the end of life: a scoping reviewBMC Palliative Care10.1186/s12904-024-01371-023:1Online publication date: 21-Mar-2024
  • (2022)Current trends and opportunities in the methodology of electrodermal activity measurementPhysiological Measurement10.1088/1361-6579/ac500743:2(02TR01)Online publication date: 4-Mar-2022
  • (2021)Advancing Stress Detection Methodology with Deep Learning Techniques Targeting UX Evaluation in AAL Scenarios: Applying Embeddings for Categorical VariablesElectronics10.3390/electronics1013155010:13(1550)Online publication date: 26-Jun-2021
  • (2021)Design and Evaluation of an Electrodermal Activity Sensor (EDA) With Adaptive GainIEEE Sensors Journal10.1109/JSEN.2021.305087521:6(8639-8649)Online publication date: 15-Mar-2021
  • (2021)Detection of Subtle Stress Episodes During UX Evaluation: Assessing the Performance of the WESAD Bio-Signals DatasetHuman-Computer Interaction – INTERACT 202110.1007/978-3-030-85613-7_17(238-247)Online publication date: 26-Aug-2021
  • (2020)Sensory Technologies for Improving Employee Experience and Strengthening Customer RelationshipsSociety as an Interaction Space10.1007/978-981-15-0069-5_13(275-291)Online publication date: 1-Mar-2020
  • (2019)Measuring Students’ Stress with Mood Sensors: First FindingsAdvances in Web-Based Learning – ICWL 201910.1007/978-3-030-35758-0_9(92-99)Online publication date: 16-Nov-2019
  • (2019)Cognitive Computing Approaches for Human Activity Recognition from Tweets—A Case Study of Twitter Marketing CampaignResearch & Innovation Forum 201910.1007/978-3-030-30809-4_15(153-170)Online publication date: 29-Oct-2019

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media