Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Mathematics and Speed for Interval Arithmetic: A Complement to IEEE 1788

Published: 14 March 2019 Publication History

Abstract

After a short introduction, the article begins with an axiomatic definition of rounded arithmetic. The concepts of rounding and of rounded arithmetic operations are defined in an axiomatic manner fully independent of special data formats and encodings. Basic properties of floating-point and interval arithmetic can directly be derived from this abstract mathematical model. Interval operations are defined as set operations for elements of the set ¯IR of closed and connected sets of real numbers. As such, they form an algebraically closed subset of the powerset of the real numbers. This property leads to explicit formulas for the arithmetic operations of floating-point intervals of ¯IF, which are executable on the computer. Arithmetic for intervals of ¯IF forms an exception free calculus, i.e., arithmetic operations for intervals of ¯IF always lead to intervals of ¯IF again.
Later sections are concerned with programming support and hardware for interval arithmetic. Both are a must and absolutely necessary to move interval arithmetic more into the center of scientific computing. With some minor hardware additions, interval operations can be made as fast as simple floating-point operations.
In vector and matrix spaces for real, complex, and interval data, the dot product is a fundamental arithmetic operation. Computing the dot product of two vectors with floating-point components exactly substantially speeds up floating-point and interval arithmetic as well as the accuracy of the computed result. Hardware needed for the exact dot product is very modest. The exact dot product is essential for long real and long interval arithmetic.
Section 9 illustrates that interval arithmetic as developed in this article already has a long tradition. Products based on these ideas have been available since 1980. Implementing what the article advocates would have a profound effect on mathematical software. Modern processor architecture from Intel, for example, comes quite close to what is requested in this article.

References

[1]
IMACS and GAMM. 1989. IMACS-GAMM resolution on computer arithmetic. Math. Comput. Simul. 31 (1989), 297--298, or in Zeitschrift für Angewandte Mathematik und Mechanik 70:4 (1990).
[2]
GAMM-IMACS proposal for accurate floating-point vector arithmetic. GAMM Rundbrief 2 (1993), 9--16, and Math. Comput. Simul., Vol. 35, IMACS, North Holland, 1993. News of IMACS, Vol. 35, No. 4 (1993), 375--382.
[3]
American National Standards Institute/Institute of Electrical and Electronics Engineers: A Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754--1987, New York, 1985. Reprinted in SIGPLAN 22, 2 (1987), 9--25. Also adopted as IEC Standard 559:1989, Revised version 2008, and in ISO/IEC/IEEE 60559:2011.
[4]
American National Standards Institute/Institute of Electrical and Electronics Engineers: A Standard for Radix-Independent Floating-Point Arithmetic. ANSI/IEEE Std. 854-1987, New York, 1987.
[5]
The IFIP WG 2.5 —IEEE 754R letter, dated September 4, 2007.
[6]
The IFIP WG 2.5 —IEEE P1788 letter, dated September 9, 2009.
[7]
G. Alefeld. 1968. Intervallrechnung über den komplexen Zahlen und einige Anwendungen. Dissertation. Universität Karlsruhe.
[8]
Ch. Baumhof. 1995. A new VLSI vector arithmetic coprocessor for the PC. In Proceedings of the 12th Symposium on Computer Arithmetic (ARITH’95), S. Knowles and W. H. McAllister (eds.), 210--215, IEEE Computer Society Press, Piscataway, NJ.
[9]
Ch. Baumhof. 1996. Ein Vektorarithmetik-Koprozessor in VLSI-Technik zur Unterstützung des Wissenschaft-lichen Rechnens. Dissertation. Universität Karlsruhe.
[10]
D. Biancolin and J. Koenig. 2015. Hardware Accelerator for Exact Dot Product, ASPIRE Laboratory, University of California, Berkeley.
[11]
G. Bohlender. 1977. Floating-point computation of functions with maximum accuracy, IEEE Trans. Comput., Vol. C-26, no. 7.
[12]
G. Bohlender. 1978. Genaue Berechnung mehrfacher Summen, Produkte und Wurzeln von Gleitkommazahlen und allgemeine Arithmetik in höheren Programmiersprachen. Dissertation. Universität Karlsruhe.
[13]
T. Teufel. 1984. Ein optimaler Gleitkommaprozessor. Dissertation. Universität Karlsruhe.
[14]
R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich. 1991. PASCAL-XSC —Sprachbeschreibung mit Beispielen, Springer, Berlin. Retrieved from http://www2.math.uni-wuppertal.de/∼xsc/ or http://www.xsc.de/.
[15]
R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich. 1992. PASCAL-XSC —Language Reference with Examples, Springer, Berlin. Retrieved from http://www2.math.uni-wuppertal.de/∼xsc/ or http://www.xsc.de/. Russian translation MIR, Moscow, 1995, 3rd edition 2006. Retrieved from http://www2.math.uni-wuppertal.de/∼xsc/ or http://www.xsc.de/.
[16]
R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. 1993. Numerical Toolbox for Verified Computing I: Basic Numerical Problems (PASCAL-XSC), Springer, Berlin. Russian translation MIR, Moskau, 2005.
[17]
R. Klatte, U. Kulisch, C. Lawo, M. Rauch, and A. Wiethoff. 1993. C-XSC —A C++ Class Library for Extended Scientific Computing, Springer, Berlin. Retrieved from http://www2.math.uni-wuppertal.de/xsc/ or http://www.xsc.de/.
[18]
R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. 1995. C++ Toolbox for Verified Computing: Basic Numerical Problems. Springer, Berlin.
[19]
R. Kirchner and U. Kulisch. 2006. Hardware support for interval arithmetic. Reliable Comput. 12 (2006), 225--237.
[20]
U. Kulisch. 1969. An Axiomatic Approach to Rounded Computations, TS Report No. 1020, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1969, and Numerische Mathematik 19 (1971), 1--17.
[21]
U. Kulisch. 1973. Implementation and Formalization of Floating-Point Arithmetics, IBM T. J. Watson-Research Center, Report Nr. RC 4608, 1--50, 1973. Invited talk at the Caratheodory Symposium, Sept. 1973 in Athens, published in: the Greek Mathematical Society, C. Caratheodory Symposium, 328--369, 1973, and in Computing 14, 323--348, 1975.
[22]
U. Kulisch. 1976. Grundlagen des Numerischen Rechnens —Mathematische Begründung der Rechnerarithmetik, Bibliographisches Institut, Mannheim Wien Zürich, 1976.
[23]
U. Kulisch. 2002. Advanced Arithmetic for the Digital Computer —Design of Arithmetic Units, Springer.
[24]
U. Kulisch. 2008. Complete interval arithmetic and its implementation on the computer. In Numerical Validation in Current Hardware Architectures, A. Cuyt et al. (eds.), Lecture Notes in Computer Science, Vol. 5492, 7--26, Springer-Verlag.
[25]
U. Kulisch. 2008. Computer Arithmetic and Validity —Theory, Implementation, and Applications (2nd ed., 2013), De Gruyter, Berlin.
[26]
U. Kulisch, Arithmetic Operations for Floating-Point Intervals, as Motion 5 accepted by the IEEE Standards Committee P1788 as definition of the interval operations. See [29].
[27]
U. Kulisch and V. Snyder. 2011. The exact dot product as basic tool for long interval arithmetic. Computing 91 (2011), 307--313.
[28]
U. Kulisch. 2012. An Axiomatic Approach to Computer Arithmetic with an appendix on Interval Hardware, Lecture Notes in Computer Science, Springer-Verlag, 484--495.
[29]
J. D. Pryce (Ed.), P1788, IEEE Standard for Interval Arithmetic, Retrieved from http://grouper.ieee.org/groups/1788/email/pdfOWdtH2mOd9.pdf.
[30]
IEEE 1788-2015—Standard for Interval Arithmetic. Retrieved from http://standards.ieee.org/findstds/standard/1788-2015.html.
[31]
F. Blomquist, W. Hofschuster, and W. Krämer. 2009. A modified staggered correction arithmetic with enhanced accuracy and very wide exponent range. In Numerical Validation in Current Hardware Architectures, A. Cuyt et al. (eds.), Lecture Notes in Computer Science, vol. 5492, Springer-Verlag, 41--67.
[32]
M. Nehmeier, S. Siegel, and J. Wolff von Gudenberg. 2012. Specification of hardware for interval arithmetic. Computing 92 (2012), 243--255.
[33]
S. Oishi, K. Tanabe, T. Ogita, and S. M. Rump. 2007. Convergence of Rump’s method for inverting arbitrarily ill-conditioned matrices. J. Comput. Appl. Math. 205 (2007), 533--544.
[34]
S. M. Rump. 1980. Kleine Fehlerschranken bei Matrixproblemen. Dissertation. Universität Karlsruhe.
[35]
S. M. Rump and E. Kaucher. 1980. Small bounds for the solution of systems of linear equations. Comput. Supp. 2 (1980), 157--164.
[36]
IBM. 1984. IBM System/370 RPQ. High Accuracy Arithmetic, SA 22-7093-0, IBM Deutschland GmbH (Department 3282, Schönaicher Strasse 220, D-71032 Böblingen).
[37]
IBM. 1986. IBM High-Accuracy Arithmetic Subroutine Library (ACRITH), IBM Deutschland GmbH (Department 3282, Schönaicher Strasse 220, D-71032 Böblingen), third edition, 1986. (1) General Information Manual, GC 33-6163-02. (2) Program Description and User’s Guide, SC 33-6164-02. (3) Reference Summary, GX 33-9009-02.
[38]
IBM. 1990. ACRITH--XSC: IBM High Accuracy Arithmetic —Extended Scientific Computation. Version 1, Release 1, IBM Deutschland GmbH (Department 3282, Schönaicher Strasse 220, D-71032 Böblingen). (1) General Information, GC33-6461-01. (2) Reference, SC33-6462-00. (3) Sample Programs, SC33-6463-00. (4) How To Use, SC33-6464-00. (5) Syntax Diagrams, SC33-6466-00.
[39]
SIEMENS. 1986. ARITHMOS (BS 2000) Unterprogrammbibliothek für Hochpräzisionsarithmetik. Kurzbeschreibung, Tabellenheft, Benutzerhandbuch, SIEMENS AG, Bereich Datentechnik, Postfach 83 09 51, D-8000 München 83, Bestellnummer U2900-J-Z87-1, September 1986.
[40]
INTEL. 2013. Intel Architecture Instruction Set Extensions Progamming Reference, 319433-017, December 2013, Retrieved from http://software.intel.com/en-us/file/319433-017pdf.

Cited By

View all
  • (2021)Shadow computation with BFloat16 to estimate the numerical accuracy of summations2021 IEEE 28th Symposium on Computer Arithmetic (ARITH)10.1109/ARITH51176.2021.00017(33-36)Online publication date: Jun-2021
  • (2019)Enclosing Chebyshev Expansions in Linear TimeACM Transactions on Mathematical Software10.1145/331939545:3(1-33)Online publication date: 30-Jul-2019

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 45, Issue 1
March 2019
278 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/3314951
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 March 2019
Accepted: 01 July 2018
Revised: 01 March 2018
Received: 01 November 2014
Published in TOMS Volume 45, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Super computer
  2. computer hardware
  3. exact dot product

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)1
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Shadow computation with BFloat16 to estimate the numerical accuracy of summations2021 IEEE 28th Symposium on Computer Arithmetic (ARITH)10.1109/ARITH51176.2021.00017(33-36)Online publication date: Jun-2021
  • (2019)Enclosing Chebyshev Expansions in Linear TimeACM Transactions on Mathematical Software10.1145/331939545:3(1-33)Online publication date: 30-Jul-2019

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media