Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3240765.3243498guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Single Flux Quantum Circuit Technology and CAD overview

Published: 05 November 2018 Publication History

Abstract

Single Flux Quantum (SFQ) electronic circuits originated with the advent of Rapid Single Flux Quantum (RSFQ) logic in 1985 and have since evolved to include more energy-efficient technologies such as ERSFQ and eSFQ. SFQ logic circuits, based on the manipulation of quantized flux pulses, have been demonstrated to run at clock speeds in excess of 120 GHz, and with bit-switch energy below 1 aJ. Small SFQ microprocessors have been developed, but characteristics inherent to SFQ circuits and the lack of circuit design tools have hampered the development of large SFQ systems. SFQ circuit characteristics include fan-out of one and the subsequent demand for pulse splitters, gate-level clocking, susceptibility to magnetic fields and sensitivity to intra-gate and inter-gate inductance. Superconducting interconnects propagate data pulses at the speed of light, but suffer from reflections at vias that attenuate transmitted pulses. The recently started IARPA SuperTools program aims to deliver SFQ Computer-Aided Design (CAD) tools that can enable the successful design of 64 bit RISC processors given the characteristics of SFQ circuits. A discussion on the technology of SFQ circuits and the most modern SFQ fabrication processes is presented, with a focus on the unique electronic design automation CAD requirements for the design, layout and verification of SFQ circuits.

References

[1]
K.K. Likharev, O.A. Mukhanov and V.K. Semenov (1987). Ultimate performance of RSFQ logic circuits. IEEE Trans. Magn., 23, 759–762.
[2]
K.K. Likharev and V.K. Semenov (1991). RSFQ logic/memory family: A new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond., 1, 3–28.
[3]
W. Chen, A.V. Rylyakov, V. Patel, J.E. Lukens and K.K. Likharev (1999). Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Trans. Appl. Supercond., 9, 3212–3215.
[4]
Y. Yamanashi, T. Kainuma, N. Yoshikawa, I. Kataeva, H. Akaike, A. Fujimaki, M. Tanaka, N. Takagi, S. Nagasawa and M. Hidaka (2010). 100 GHz demonstrations based on the Single-Flux-Quantum cell library for the 10 kA/cm2 Nb multi-layer process. IEICE Trans. Electron., E93-C, 440–444.
[5]
S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson and M.A. Gouker (2016). Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond., 26, 1100110.
[6]
O.A. Mukhanov, D. Gupta, A.M. Kadin and V.K. Semenov (2004). Superconductor analog-to-digital converters. Proc. IEEE, 92, 1564–1584.
[7]
N. Nakajima, F. Matsuzaki, Y. Yamanashi, N. Yoshikawa, M. Tanaka, T. Kondo, A. Fujimaki, H. Terai and S. Yorozu (2004). Design and implementation of circuit components of the SFQ microprocessor, CORE1. Supercond. Sci. Technol., 17, 301–307.
[8]
Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi and A. Fujimaki (2016). Design and demonstration of an 8-bit bit-serial RSFQ microprocessor: CORE e4. IEEE Trans. Appl. Supercond., 26, 1301205.
[9]
O.A. Mukhanov (2011). Energy-efficient Single Flux Quantum technology. IEEE Trans. Appl. Supercond., 21, 760–769.
[10]
D.S. Holmes, A.L. Ripple and M.A. Manheimer (2013). Energy-efficient superconducting computing - power budgets and requirements. IEEE Trans. Appl. Supercond., 23, 1701610.
[11]
M.A. Manheimer (2015). Cryogenic computing complexity program: phase 1 introduction. IEEE Trans. Appl. Supercond., 25, 1301704.
[13]
T. Ortlepp (2009). General design aspects of integrated superconductor electronics. Cryogenics, 49, 648–651.
[14]
C.J. Fourie (2018). Extraction of SFQ circuit Verilog models through flux loop analysis. IEEE Trans. Appl. Supercond., 28, 1300811.
[15]
K. Gaj, E.G. Friedman and M.J. Feldman (1997). Timing of multi-gigahertz Rapid Single Flux Quantum digital circuits. J. VLSI Signal Process., 16, 247–276.
[16]
S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, C.J. Galbraith, L.M. Johnson, M.A. Gouker and V.K. Semenov (2015). Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers. IEEE Trans. Appl. Supercond., 25, 1100905.
[17]
S.V. Polonsky, V.K. Semenov and D.F. Schneider (1993). Transmission of Single-Flux-Quantum pulses along superconducting microstrip lines. IEEE Trans. Appl. Supercond., 3, 2598–2600.
[18]
H. Suzuki, S. Nagasawa, K. Miyahara and Y. Enomoto (2000). Characteristics of driver and receiver circuits with a passive transmission line in RSFQ circuits. IEEE Trans. Appl. Supercond., 10, 1637–1641.
[19]
S.N. Shahsavani, T.-R. Lin, A. Shafaei, C.J. Fourie and M. Pedram (2017). An integrated row-based cell placement an interconnect synthesis tool for large SFQ logic circuits. IEEE Trans. Appl. Supercond., 27, 1302008.
[20]
K. Gaj, Q.P. Herr, V. Adler, A. Karniewski, E.G. Friedman and M.J. Feldman (1999). Tools for the computer-aided design of multigigahertz superconducting digital circuits. IEEE Trans. Appl. Supercond., 9, 18–38.
[21]
H.J.M. Ter Brake, F.-I. Buchholz, G. Burnell, T. Claeson, D. Crété, P. Febvre, G.J. Gerritsma, H. Hilgenkamp, R. Humphreys, Z. Ivanov, W. Jutzi, M.I. Khabipov, J. Mannhart, H.-G. Meyer, J. Niemeyer, A. Ravex, H. Rogalla and M. Russo (2006). SCENET roadmap for superconductor digital electronics. Physica C, 439, 1–41.
[22]
C.J. Fourie and M.H. Volkmann (2013). Status of superconductor electronic circuit design software. IEEE Trans. Appl. Supercond., 23, 1300205.
[23]
C.J. Fourie (2018). Digital superconducting electronics design tool - status and roadmap. IEEE Trans. Appl. Supercond. 28, 1300412.
[24]
J.A. Delport and C.J. Fourie (2018). A static timing analysis tool for superconducting digital circuit applications. IEEE Trans. Appl. Supercond., 28, 1300705.
[25]
C.J. Fourie, M.M. Botha, P. Febvre, C.L. Ayala, Q. Xu, N. Yoshikawa, E. Patrick, M. Law, Y. Wang, M. Annavaram, P. Beerel, S. Gupta, S. Nazarian and M. Pedram (2018). ColdFlux superconducting EDA and TCAD tools development project: overview and progress. In IEEE Applied Supercondcutivity Conference, Seattle.
[26]
[27]
Whiteley Research, Inc. http://www.wrcad.com
[28]
C. Pegrum, T. Zhang, J. Du and Y.J. Guo (2016). Simulation of HTS Josephson mixers. IEEE Trans. Appl. Supercond., 26, 1500905.
[29]
M.M. Khapaev and M.Y. Kupriyanov (2008). New ideas for long Josephson junctions realistic devices simulation. J. Phys. Conf. Series, 129, 012037.
[30]
W.C. Stewart (1968). Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett., 12, 277–280.
[31]
D.E. McCumber (1968). Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions. J. Appl. Phys., 39, 3113–3118.
[33]
S.R. Whiteley (1991). Josephson junctions in Spice3. IEEE Trans. Magn., 27, 2902–2905.
[34]
S. Polonsky, P. Shevchenko, A. Kirichenko, D. Zinoviev and A. Rylyakov (1997). PSCAN'96: New software for simulation and optimization of complex RSFQ circuits. IEEE Trans. Appl. Supercond., 7, 2685–2689.
[35]
PSCAN2 Superconducting circuit simulator (2016). http://www.pscan2sim.org/
[36]
E.S. Fang and T. Van Duzer (1989). A Josephson integrated ciruit simulator (JSIM) for superconductive electronic applications. In Ext. Abs. ISEC, Tokyo.
[37]
J. Satchell (1997). Stochastic simulation of SFQ logic. IEEE Trans. Appl. Supercond., 7, 3315–3318.
[38]
J.A. Delport, K. Jackman, P. Le Roux and C.J. Fourie (2018). JoSIM - Superconductor SPICE simulator. In IEEE Applied Supercondcutivity Conference, Seattle.
[39]
N.R. Werthamer (1966). Nonlinear self-coupling of Josephson radiation in superconducting tunnel junctions. Phys. Rev., 147, 255.
[40]
C.A. Hamilton and K.C. Gilbert (1991). Margins and yield in single flux quantum logic. IEEE Trans. Appl. Supercond., 1, 157–163.
[41]
M.W. Johnson, Q.P. Herr and J.W. Spargo (1999). Monte-Carlo yield analysis. IEEE Trans. Appl. Supercond., 9, 3322–3325.
[42]
C.J. Fourie, W.J. Perold and H.R. Gerber (2005). Complete Monte Carlo model description of lumped-element RSFQ logic circuits. IEEE Trans. Appl. Supercond., 15, 384–387.
[43]
T. Harnisch, J. Kunert, H. Toepfer and H.F. Uhlmann (1997). Design centering methods for yield optimization of cryoelectronic circuits. IEEE Trans. Appl. Supercond., 7, 3434–3437.
[44]
N. Mori, A. Akahori, T. Sato, N. Takeuchi, A. Fujimaki and H. Hayakawa (2001). A new optmization procedure for single flux quantum circuits. Physica C, 357–360, 1557–1560.
[45]
R. Collot, P. Febvre, J. Kunert and H.-G. Meyer (2013). Operation of low-Tc circuits in a magnetic environment. IEEE Trans. Appl. Supercond., 23, 1700404.
[46]
R.S. Bakolo, J.A. Delport, P. Febvre and C.J. Fourie (2017). Analysis of a shielding approach for magnetic field tolerant SFQ circuits. IEEE Trans. Appl. Supercond., 27, 1301305.
[47]
C. Adler, C.-H. Cheah, K. Gaj, D.K. Brock and E.G. Friedman (1997). A Cadence-based design environment for Single Flux Quantum circuits. IEEE Trans. Appl. Supercond., 7, 3294–3297.
[48]
R.M.C. Roberts and C.J. Fourie (2015). Layout-versus-scematic verification for superconductive integrated circuits. IEEE Trans. Appl. Supercond., 25, 1200105.
[49]
C.J. Fourie (2015). Full-gate verification of superconductive integrated circuit layouts with InductEx. IEEE Trans. Appl. Supercond., 25, 1300209.
[50]
C.J. Fourie, O. Wetzstein, T. Ortlepp and J. Kunert (2011). Three-dimensional multi-terminal superconductive integrated circuit inductance extraction. Supercond. Sci. Technol., 24, 125015.
[51]
K. Jackman and C.J. Fourie (2015). Fast multicore FastHenry and a tetrahedral modeling method for inductance extraction of complex 3D geometries. In 15th International Superconducting Electronics Conference, Nagoya.
[52]
K. Jackman and C.J. Fourie (2016). Tetrahedral modeling method for inductance extraction of complex 3-D superconducting structures. IEEE Trans. Appl. Supercond., 26, 0602305.
[53]
C.J. Fourie, C. Shawawreh, I.V. Vernik and T.V. Filippov (2017). High-accuracy InductEx calibration sets for MIT-LL SFQ4ee and SFQ5ee processes. IEEE Trans. Appl. Supercond., 27, 1300805.
[54]
C.J. Fourie, O. Wetzstein, J. Kunert, H. Toepfer and H.-G. Meyer (2013). Experimentally verified inductance extraction and parameter study for superconductive integrated circuit wires crossing ground plane holes. Supercond. Sci. Tech., 26, 015016.
[55]
C.J. Fourie, N. Takeuchi and N. Yoshikawa (2016). Inductance and current distribution extraction in Nb multilayer circuits with superconductive and resistive components. IEICE Trans. Electron., E99-C, 683–691.
[56]
K. Jackman and C.J. Fourie (2017). Flux trapping analysis in superconducting circuits. IEEE Trans. Appl. Supercond., 27, 1300105.
[57]
M.M. Khapaev, A.Y. Kidiyarova-Shevchenko, P. Magnelind and M.Y. Kupriyanov (2001). 3D-MLSI: Software package for inductance calculation in multilayer superconducting integrated circuits. IEEE Trans. Appl. Supercond., 11, 1090–1093.
[58]
K. Nabors and J. White (1991). FastCap: a multipole accelerated 3-D capacitance extraction program. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 10, 1447–1459.
[59]
K. Jackman, P. Le Roux and C.J. Fourie (2018). Impedance extraction of superconducting structures. In IEEE Applied Superconductivity Conference, Seattle,.
[60]
R. Van Staden, C.J. Fourie and P. Le Roux (2018). Characteristic modeling of superconducting vias in multilayer processes. In IEEE Applied Superconductivity Conference, Seattle.
[61]
L.C. Müller and C.J. Fourie (2014). Automated state machine and timing characteristic extraction for RSFQ circuits. IEEE Trans. Appl. Supercond., 24, 1300110.
[62]
Y. Kameda, S. Yorozu and Y. Hashimoto (2006). Automatic Single-Flux-Quantum (SFQ) logic synthesis method for top-down circuit design. J. Phys.: Conf. Ser., 43, 1179–1182.
[63]
N.K. Katam and M. Pedram (2018). Logic optimization, complex cell design, and retiming of Single Flux Quantum circuits. IEEE Trans. Appl. Supercond., 28, 1301409.
[64]
M. Eren Celik and A. Bozbey (2013). A statistical approach to delay, jitter and timing of signals of RSFQ wiring cells and clocked gates. IEEE Trans. Appl. Supercond., 23, 1701305.

Cited By

View all
  • (2024)Performance evaluation of superconductor integrated circuit simulatorsPhysica C: Superconductivity and its Applications10.1016/j.physc.2024.1354573624(1354573)Online publication date: Sep-2024
  • (2023)Design of the Clockless Logic Gates Based on Quantum Phase Slip JunctionIEEE Transactions on Applied Superconductivity10.1109/TASC.2023.326543133:6(1-9)Online publication date: Sep-2023
  • (2023)Low-Cost Superconducting Fan-Out With Cell $\text{I}_\text{C}$ RankingIEEE Transactions on Applied Superconductivity10.1109/TASC.2023.325679733:6(1-12)Online publication date: Sep-2023
  • Show More Cited By

Index Terms

  1. Single Flux Quantum Circuit Technology and CAD overview
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
          Nov 2018
          939 pages

          Publisher

          IEEE Press

          Publication History

          Published: 05 November 2018

          Permissions

          Request permissions for this article.

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 25 Nov 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)Performance evaluation of superconductor integrated circuit simulatorsPhysica C: Superconductivity and its Applications10.1016/j.physc.2024.1354573624(1354573)Online publication date: Sep-2024
          • (2023)Design of the Clockless Logic Gates Based on Quantum Phase Slip JunctionIEEE Transactions on Applied Superconductivity10.1109/TASC.2023.326543133:6(1-9)Online publication date: Sep-2023
          • (2023)Low-Cost Superconducting Fan-Out With Cell $\text{I}_\text{C}$ RankingIEEE Transactions on Applied Superconductivity10.1109/TASC.2023.325679733:6(1-12)Online publication date: Sep-2023
          • (2021)qMCProceedings of the 2021 Great Lakes Symposium on VLSI10.1145/3453688.3461522(259-264)Online publication date: 22-Jun-2021
          • (2021)Cryogenic Electronics and Quantum Information Processing2021 IEEE International Roadmap for Devices and Systems Outbriefs10.1109/IRDS54852.2021.00012(1-93)Online publication date: Nov-2021
          • (2020)Design Automation Methodology from RTL to Gate-level Netlist and Schematic for RSFQ Logic CircuitsProceedings of the 2020 on Great Lakes Symposium on VLSI10.1145/3386263.3406898(145-150)Online publication date: 7-Sep-2020
          • (2020)High Speed Terahertz Devices via Emerging Hybrid GNRFET/Josephson Junction TechnologiesIEEE Transactions on Applied Superconductivity10.1109/TASC.2020.299675930:8(1-11)Online publication date: Dec-2020
          • (2020)SystemVerilog Modeling of SFQ and AQFP CircuitsIEEE Transactions on Applied Superconductivity10.1109/TASC.2019.295719630:2(1-13)Online publication date: Mar-2020

          View Options

          View options

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media