Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Public Access

Measuring the Significance of Spatiotemporal Co-Occurrences

Published: 02 November 2017 Publication History

Abstract

Spatiotemporal co-occurrences are the appearances of spatial and temporal overlap relationships among trajectory-based spatiotemporal instances with region-based geometric representations. Assessing the significance of spatiotemporal co-occurrences plays an important role in the spatiotemporal frequent pattern mining applications of moving region objects. A spatiotemporal version of the popular Jaccard measure has been used for measuring the strength of spatiotemporal co-occurrences. We will demonstrate the shortcomings of the Jaccard (J) measure when it is used for assessing the significance of co-occurrences among spatiotemporal instances with highly different spatiotemporal evolution characteristics. We will present two extended novel measures (J+ and J*) that address the problems linked to the J measure. Our work includes algorithms for the significance measure calculations, the proofs and explanations about the key properties of measures, and a detailed experimental evaluation section. Our experiments include in-depth relevancy and running time analyses demonstrating the suitability of our proposed measures for spatiotemporal frequent pattern mining algorithms.

Supplementary Material

a9-aydin-apndx.pdf (aydin.zip)
Supplemental movie, appendix, image and software files for, Measuring the Significance of Spatiotemporal Co-Occurrences

References

[1]
Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. 1993. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD Interntional Conference on Management of Data 207--216.
[2]
Berkay Aydin. 2016. Measuring the Significance of Spatiotemporal Co-occurrences. Retrieved August 26, 2017 from http://www.cs.gsu.edu/ baydin2/proj/jstar.html.
[3]
Berkay Aydin, Vijay Akkineni, and Rafal Angryk. 2016. Modeling and indexing spatiotemporal trajectory data in non-relational databases. In Managing Big Data in Cloud Computing Environments. IGI Global, 133--162.
[4]
Berkay Aydin, Vijay Akkineni, and Rafal A. Angryk. 2015. Time-efficient significance measure for discovering spatiotemporal co-occurrences from data with unbalanced characteristics. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. 80:1--80:4.
[5]
Berkay Aydin and Rafal A. Angryk. 2015. Spatiotemporal frequent pattern mining on solar data: Current algorithms and future directions. In IEEE International Conference on Data Mining Workshop (ICDMW’15). 575--581.
[6]
Berkay Aydin and Rafal A. Angryk. 2016. Discovering spatiotemporal event sequences. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems (MobiGIS)16). 46--55. http://dl.acm.org/citation.cfm?id=3004735.
[7]
Berkay Aydin and Rafal A. Angryk. 2016. A graph-based approach to spatiotemporal event sequence mining. In IEEE International Conference on Data Mining Workshops (ICDM Workshops’16).1090--1097.
[8]
Berkay Aydin and Rafal A. Angryk. 2016. Spatiotemporal event sequence mining from evolving regions. In Proceedings of the 23rd International Conference on Pattern Recognition (ICPR’16). 4172--4177.
[9]
Berkay Aydin, Rafal A. Angryk, and Karthik Ganesan Pillai. 2014. ERMO-DG: Evolving region moving object dataset generator. In Proceedings of the 27th FLAIRS International Conference. AAAI Press, 321--326. https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS14/paper/view/7876.
[10]
Berkay Aydin, Dustin Kempton, Vijay Akkineni, Shaktidhar Reddy Gopavaram, Karthik Ganesan Pillai, and Rafal A. Angryk. 2014. Spatiotemporal indexing techniques for efficiently mining spatiotemporal co-occurrence patterns. In Proceedings of the 2014 IEEE International Conference on Big Data (Big Data’14). 1--10.
[11]
Roberto J. Bayardo, Jr. and Rakesh Agrawal. 1999. Mining the most interesting rules. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’99). ACM, New York, 145--154.
[12]
Richard C. Canfield, Hugh S. Hudson, and David E. McKenzie. 1999. Sigmoidal morphology and eruptive solar activity. Geophysical Research Letters 26, 6 (1999), 627--630.
[13]
Richard C. Canfield, Hugh S. Hudson, and Alexei A. Pevtsov. 2000. Sigmoids as precursors of solar eruptions. IEEE Transactions on Plasma Science 28, 6 (2000), 1786--1794.
[14]
Huiping Cao, Nikos Mamoulis, and David W. Cheung. 2006. Discovery of collocation episodes in spatiotemporal data. In Proceedings of the 6th IEEE International Conference on Data Mining (ICDM’06). 823--827.
[15]
Mete Celik. 2015. Partial spatio-temporal co-occurrence pattern mining. Knowledge and Information Systems 44, 1 (Jul 2015), 27--49.
[16]
Mete Celik, Shashi Shekhar, James P. Rogers, James A. Shine, and Jin Soung Yoo. 2006. Mixed-drove spatio-temporal co-occurence pattern mining: A summary of results. In Proceedings of the 6th IEEE International Conference on Data Mining (ICDM’06). 119--128.
[17]
Elena Deza and Michel-Marie Deza. 2006. General definitions. In Dictionary of Distances, Elena Deza and Michel-Marie Deza (Eds.). Elsevier, Amsterdam, 2--30.
[18]
Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96). 226--231. http://dl.acm.org/citation.cfm?id=3001460.3001507
[19]
Joan Feynman and Sara F. Martin. 1995. The initiation of coronal mass ejections by newly emerging magnetic flux. Journal of Geophysical Research: Space Physics 100, A3 (1995), 3355--3367.
[20]
Soukaina Filali Boubrahimi, Berkay Aydin, Dustin Kempton, and Rafal A. Angryk. 2016. Spatio-temporal interpolation methods for solar events metadata. In Proceedings of the 2016 IEEE International Conference on Big Data (BigData’16). 3149--3157.
[21]
Liqiang Geng and Howard J. Hamilton. 2006. Interestingness measures for data mining: A survey. ACM Computing Surveys 38, 3 (2006).
[22]
Joachim Gudmundsson, Marc J. van Kreveld, and Bettina Speckmann. 2004. Efficient detection of motion patterns in spatio-temporal data sets. In Proceedings of the 12th ACM International Workshop on Geographic Information Systems (ACM-GIS’04). 250--257.
[23]
Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without candidate generation. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data1--12.
[24]
Jean Heyvaerts, Eric R. Priest, and David M. Rust. 1977. An emerging flux model for the solar flare phenomenon. The Astrophysical Journal 216 (1977), 123--137.
[25]
Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. 2000. Algorithms for association rule mining—A general survey and comparison. SIGKDD Explorations 2, 1 (2000), 58--64.
[26]
M. Shahriar Hossain and Rafal A. Angryk. 2007. GDClust: A graph-based document clustering technique. In Proceedings of the 7th IEEE International Conference on Data Mining Workshops (ICDM’07). 417--422.
[27]
Yan Huang, Jian Pei, and Hui Xiong. 2006. Mining co-location patterns with rare events from spatial data sets. GeoInformatica 10, 3 (2006), 239--260.
[28]
Yan Huang, Shashi Shekhar, and Hui Xiong. 2004. Discovering colocation patterns from spatial data sets: A general approach. IEEE Transactions on Knowledge and Data Engineering 16, 12 (2004), 1472--1485.
[29]
N. Hurlburt, M. Cheung, C. Schrijver, L. Chang, S. Freeland, S. Green, C. Heck, A. Jaffey, A. Kobashi, D. Schiff, J. Serafin, R. Seguin, G. Slater, A. Somani, and R. Timmons. 2010. Heliophysics event knowledgebase for the solar dynamics observatory (SDO) and beyond. Solar Physics 275, 1 (2010), 67--78. 1573-093XDOI:http://dx.doi.org/10.1007/s11207-010-9624-2
[30]
Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. 2005. On discovering moving clusters in spatio-temporal data. In Proceedings of the 9th International Symposium on Advances in Spatial and Temporal Databases (SSTD’05). 364--381.
[31]
Barry D. Keim, Robert A. Muller, and Gregory W. Stone. 2007. Spatiotemporal patterns and return periods of tropical storm and hurricane strikes from Texas to Maine.Journal of Climate 20, 14 (2007), 3498--3509.
[32]
Dustin Kempton and Rafal A. Angryk. 2015. Tracking solar events through iterative refinement. Astronomy and Computing 13 (2015), 124--135.
[33]
Krzysztof Koperski and Jiawei Han. 1995. Discovery of spatial association rules in geographic information databases. In Advances in Proceedings of the 4th International Symposium on Spatial Databases (SSD’95). 47--66. http://dl.acm.org/citation.cfm?id=647224.718925.
[34]
Sam Krucker, Arnold O. Benz, Timothy S. Bastian, and Loren W. Acton. 1997. X-ray network flares of the quiet sun. The Astrophysical Journal 488 (Oct. 1997), 499--505.
[35]
Patrick Laube and Stephan Imfeld. 2002. Analyzing relative motion within groups of trackable moving point objects. In Proceedings of the 2nd International Conference on Geographic Information Science (GIScience’02). 132--144.
[36]
Patrick Laube, Marc van Kreveld, and Stephan Imfeld. 2005. Finding REMO—Detecting Relative Motion Patterns in Geospatial Lifelines. Springer, Berlin, 201--215.
[37]
LMSAL. 2014. Heliophysics Event Registry. Retrieved June 26, 2014 from http://lmsal.com/isolsearch.
[38]
Petrus C. Martens and Cornelis Zwaan. 2001. Origin and evolution of filament-prominence systems. The Astrophysical Journal 558, 2 (2001), 872. https://doi.org/10.1086/322279.
[39]
Sara F. Martin. 1998. Conditions for the formation and maintenance of filaments--(Invited review). Solar Physics 182, 1 (1998), 107--137.
[40]
Earle. B. Mayfield and Jon K. Lawrence. 1985. The correlation of solar flare production with magnetic energy in active regions. Solar Physics 96 (April 1985), 293--305.
[41]
Kenneth McGarry. 2005. A survey of interestingness measures for knowledge discovery. Knowledge Engineering Review 20, 1 (2005), 39--61.
[42]
Yasuhiko Morimoto. 2001. Mining frequent neighboring class sets in spatial databases. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 353--358.
[43]
Micheal J. Murray, Lidia van Driel-Gesztelyi, and Deborah Baker. 2009. Simulations of emerging flux in a coronal hole: Oscillatory reconnection. Astronomy 8 Astrophysics 494, 1 (2009), 329--337.
[44]
Nariaki V. Nitta and Hugh S. Hudson. 2001. Recurrent flare/CME events from an emerging flux region. Geophysical Research Letters 28, 19 (2001), 3801--3804.
[45]
Eugene N. Parker. 1979. Sunspots and the physics of magnetic flux tubes. I—The general nature of the sunspot. II—Aerodynamic drag. The Astrophysical Journal 230 (1979), 905--923.
[46]
Karthik Ganesan Pillai, Rafal A. Angryk, and Berkay Aydin. 2013. A filter-and-refine approach to mine spatiotemporal co-occurrences. In Proceedings of the 21st SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL’13). 104--113.
[47]
Karthik Ganesan Pillai, Rafal A. Angryk, Juan M. Banda, Michael A. Schuh, and Tim Wylie. 2012. Spatio-temporal co-occurrence pattern mining in data sets with evolving regions. In Proceedings of the 12th IEEE International Conference on Data Mining Workshops. 805--812.
[48]
Karthik Ganesan Pillai, Rafal A. Angryk, Juan M. Banda, Tim Wylie, and Michael A. Schuh. 2014. Spatiotemporal co-occurrence rules. In New Trends in Databases and Information Systems. Springer, 27--35.
[49]
Eric Priest. 2014. Magnetohydrodynamics of the Sun. Cambridge University Press.
[50]
Stéphane Régnier and Richard C. Canfield. 2006. Evolution of magnetic fields and energetics of flares in active region 8210. Astronomy 8 Astrophysics 451, 1 (2006), 319--330. https://doi.org/10.1051/0004-6361:20054171.
[51]
David M. Rust and Ashok Kumar. 1996. Evidence for helically kinked magnetic flux ropes in solar eruptions. The Astrophysical Journal Letters 464, 2 (1996), L199.
[52]
Space Studies Board. 2008. Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report-Extended Summary. National Academies Press.
[53]
Michael Steinbach and Vipin Kumar. 2007. Generalizing the notion of confidence. Knowledge and Information Systems 12, 3 (2007), 279--299.
[54]
Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. 2002. Selecting the right interestingness measure for association patterns. In Proceedings of the 8th ACM SIGKDD International Confeerence on Knowledge Discovery and Data Mining. 32--41.
[55]
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005. Introduction to Data Mining. Addison-Wesley.
[56]
Peter John Taylor. 1977. Quantitative Methods in Geography: An Introduction to Spatial Analysis. Houghton Mifflin, Boston.
[57]
Adrian A. van Ballegooijen and Petrus. C. Martens. 1989. Formation and eruption of solar prominences. The Astrophysical Journal 343 (Aug. 1989), 971--984.
[58]
Cornelis J. van Rijsbergen. 1979. Information Retrieval. Butterworth.
[59]
Hui Xiong, Shashi Shekhar, Yan Huang, Vipin Kumar, Xiaobin Ma, and Jin Soung Yoo. 2004. A framework for discovering co-location patterns in data sets with extended spatial objects. In Proceedings of the 4th SIAM International Conference on Data Mining. 78--89. https://doi.org/10.1137/1.9781611972740.8.
[60]
Zeng-Jie Yang and Robert J. Wechsler-Reya. 2007. Hit’em where they live: Targeting the cancer stem cell niche. Cancer Cell 11, 1 (2007), 3--5.
[61]
Jin Soung Yoo, Shashi Shekhar, Sangho Kim, and Mete Celik. 2006. Discovery of co-evolving spatial event sets. In Proceedings of the 6th SIAM International Conference on Data Mining. 306--315.

Cited By

View all
  • (2021)Towards Better Detection and Analysis of Massive Spatiotemporal Co-Occurrence PatternsIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2020.298322622:6(3387-3402)Online publication date: Jun-2021
  • (2021)Spatiotemporal event sequence discovery without thresholdsGeoinformatica10.1007/s10707-020-00427-625:1(149-177)Online publication date: 1-Jan-2021
  • (2021)A Survey on Spatiotemporal Co-occurrence Pattern Mining TechniquesApplications of Artificial Intelligence in Engineering10.1007/978-981-33-4604-8_18(225-238)Online publication date: 11-May-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Spatial Algorithms and Systems
ACM Transactions on Spatial Algorithms and Systems  Volume 3, Issue 3
September 2017
87 pages
ISSN:2374-0353
EISSN:2374-0361
DOI:10.1145/3146386
  • Editor:
  • Hanan Samet
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 November 2017
Accepted: 01 September 2017
Revised: 01 September 2017
Received: 01 April 2016
Published in TSAS Volume 3, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Spatiotemporal knowledge discovery
  2. spatiotemporal co-occurrence patterns
  3. spatiotemporal objective measure

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)74
  • Downloads (Last 6 weeks)9
Reflects downloads up to 17 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Towards Better Detection and Analysis of Massive Spatiotemporal Co-Occurrence PatternsIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2020.298322622:6(3387-3402)Online publication date: Jun-2021
  • (2021)Spatiotemporal event sequence discovery without thresholdsGeoinformatica10.1007/s10707-020-00427-625:1(149-177)Online publication date: 1-Jan-2021
  • (2021)A Survey on Spatiotemporal Co-occurrence Pattern Mining TechniquesApplications of Artificial Intelligence in Engineering10.1007/978-981-33-4604-8_18(225-238)Online publication date: 11-May-2021
  • (2019)An Application of Spatio-temporal Co-occurrence Analyses for Integrating Solar Active Region Data from Multiple Reporting Modules2019 IEEE International Conference on Big Data (Big Data)10.1109/BigData47090.2019.9006185(4950-4959)Online publication date: Dec-2019
  • (2019)EvolvingClusters: Online Discovery of Group Patterns in Enriched Maritime DataMultiple-Aspect Analysis of Semantic Trajectories10.1007/978-3-030-38081-6_5(50-65)Online publication date: 16-Sep-2019
  • (2018)Spatiotemporal Event Sequence (STES) MiningSpatiotemporal Frequent Pattern Mining from Evolving Region Trajectories10.1007/978-3-319-99873-2_6(71-96)Online publication date: 16-Oct-2018
  • (2018)Significance Measurements for Spatiotemporal Co-occurrencesSpatiotemporal Frequent Pattern Mining from Evolving Region Trajectories10.1007/978-3-319-99873-2_4(29-53)Online publication date: 16-Oct-2018
  • (2017)Top-(R%, K) Spatiotemporal Event Sequence Mining2017 IEEE International Conference on Data Mining Workshops (ICDMW)10.1109/ICDMW.2017.39(250-257)Online publication date: Nov-2017

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media