Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3117811.3117833acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Minding the Billions: Ultra-wideband Localization for Deployed RFID Tags

Published: 04 October 2017 Publication History

Abstract

State-of-the-art RFID localization systems fall under two categories. The first category operates with off-the-shelf narrowband RFID tags but makes restrictive assumptions on the environment or the tag's movement patterns. The second category does not make such restrictive assumptions; however, it requires designing new ultra-wideband hardware for RFIDs and uses the large bandwidth to directly compute a tag's 3D location. Hence, while the first category is restrictive, the second one requires replacing the billions of RFIDs already produced and deployed annually. This paper presents RFind, a new technology that brings the benefits of ultra-wideband localization to the billions of RFIDs in today's world. RFind does not require changing today's passive narrowband RFID tags. Instead, it leverages their underlying physical properties to emulate a very large bandwidth and uses it for localization. Our empirical results demonstrate that RFind can emulate over 220MHz of bandwidth on tags designed with a communication bandwidth of only tens to hundreds of kHz, while remaining compliant with FCC regulations. This, combined with a new super-resolution algorithm over this bandwidth, enables RFind to perform 3D localization with sub-centimeter accuracy in each of the x/y/z dimensions, without making any restrictive assumptions on the tag's motion or the environment.

References

[1]
Calculating radiated power and field strength for conducted power measurements. http://www.semtech.com.
[2]
CDA2990. http://www.ettus.com. Ettus Inc.
[3]
EPC UHF Gen2 Air Interface Protocol. http://www.gs1.org/epcrfid/epc-rfid-uhf-air-interface-protocol/2-0--1.
[4]
Laser Measuring. http://www.boschtools.com. Bosch Inc.
[5]
LFRX daughterboard. http://www.ettus.com. ettus inc.
[6]
MTI RFID antenna. http://www.mtiwe.com. MTI Wireless Edge.
[7]
SBX daughterboard. http://www.ettus.com. ettus inc.
[8]
usrp n210. http://www.ettus.com. ettus inc.
[9]
Understanding the Fcc Regulations for Low-power, Non-licensed Transmitters. Office of Engineering and Technology Federal Communications Commission, 1993.
[10]
The State of RFID Implementation and Its Policy Implications: An IEEE-USA White Paper. IEEE USA, 2009.
[11]
F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller. 3d tracking via body radio reflections. In Usenix NSDI, 2014.
[12]
Alien Technology Inc. ALN-9640 Squiggle Inlay. www.alientechnology.com.
[13]
D. Arnitz, K. Witrisal, and U. Muehlmann. Multifrequency continuous-wave radar approach to ranging in passive uhf rfid. IEEE Transactions on Microwave Theory and Techniques, 57(5):1398--1405, 2009.
[14]
S. Azzouzi, M. Cremer, U. Dettmar, R. Kronberger, and T. Knie. New measurement results for the localization of uhf rfid transponders using an angle of arrival (aoa) approach. In RFID (RFID), 2011 IEEE International Conference on, pages 91--97. IEEE, 2011.
[15]
D. H. Bailey and P. N. Swarztrauber. The fractional fourier transform and applications. SIAM review, 33(3):389--404, 1991.
[16]
M. Bouet and A. L. Dos Santos. Rfid tags: Positioning principles and localization techniques. In Wireless Days, 2008. WD'08. 1st IFIP, pages 1--5. IEEE, 2008.
[17]
M. Bouet and G. Pujolle. A range-free 3-d localization method for rfid tags based on virtual landmarks. In Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on, pages 1--5. IEEE, 2008.
[18]
K. Chawla, C. McFarland, G. Robins, and C. Shope. Real-time rfid localization using rss. In Localization and GNSS (ICL-GNSS), 2013 International Conference on, pages 1--6. IEEE, 2013.
[19]
M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald. A 40 gs/s time interleaved adc using sige bicmos technology. IEEE Journal of Solid-State Circuits, 45(2):380--390, 2010.
[20]
D. Dardari, R. D'Errico, C. Roblin, A. Sibille, and M. Z. Win. Ultrawide bandwidth rfid: The next generation? Proceedings of the IEEE, 98(9):1570--1582, 2010.
[21]
W. Denk, J. H. Strickler, W. W. Webb, et al. Two-photon laser scanning fluorescence microscopy. Science, 248(4951):73--76, 1990.
[22]
K. Finkelzeller. The rfid handbook, 2003.
[23]
L. Gang et al. Bandwidth dependence of cw ranging to uhf rfid tags in severe multipath environments. In IEEE RFID 2011.
[24]
S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE signal processing magazine, 22(4):70--84, 2005.
[25]
P. R. Gray and R. G. Meyer. Analysis and design of analog integrated circuits. John Wiley & Sons, Inc., 1990.
[26]
J. Han, C. Qian, X. Wang, D. Ma, J. Zhao, W. Xi, Z. Jiang, and Z. Wang. Twins: Device-free object tracking using passive tags. IEEE/ACM Transactions on Networking, 24(3):1605--1617, 2016.
[27]
F. Helmchen and W. Denk. Deep tissue two-photon microscopy. Nature methods, 2(12):932--940, 2005.
[28]
HTC. HTC Vive. https://www.vive.com/us/.
[29]
IEEE. A new TX leakage-suppression technique for an RFID receiver using a dead-zone amplifier, 2013.
[30]
N. Kargas, F. Mavromatis, and A. Bletsas. Fully-coherent reader with commodity sdr for gen2 fm0 and computational rfid. IEEE Wireless Communications Letters, 4(6):617--620, 2015.
[31]
N. C. Karmakar et al. Chipless rfid tag localization. IEEE Transactions on Microwave Theory and Techniques, 61(11):4008--4017, 2013.
[32]
R. Kronberger, T. Knie, R. Leonardi, U. Dettmar, M. Cremer, and S. Azzouzi. Uhf rfid localization system based on a phased array antenna. In Antennas and Propagation (APSURSI), 2011 IEEE International Symposium on, pages 525--528. IEEE, 2011.
[33]
I. Kwon, Y. Eo, H. Bang, K. Choi, S. Jeon, S. Jung, D. Lee, and H. Lee. A single-chip cmos transceiver for uhf mobile rfid reader. IEEE Journal of Solid-State Circuits, 43(3):729--738, 2008.
[34]
N. Levanon. Radar principles. New York, Wiley-Interscience, 1988, 320 p., 1988.
[35]
X. Li, Y. Zhang, and M. G. Amin. Multifrequency-based range estimation of rfid tags. In RFID, 2009 IEEE International Conference on, pages 147--154. IEEE, 2009.
[36]
T. Liu, L. Yang, Q. Lin, Y. Guo, and Y. Liu. Anchor-free backscatter positioning for rfid tags with high accuracy. In INFOCOM, 2014 Proceedings IEEE, pages 379--387. IEEE, 2014.
[37]
Y. Ma, X. Hui, and E. C. Kan. 3d real-time indoor localization via broadband nonlinear backscatter in passive devices with centimeter precision. In Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pages 216--229. ACM, 2016.
[38]
G. Mao, B. Fidan, and B. D. Anderson. Wireless sensor network localization techniques. Computer networks, 51(10):2529--2553, 2007.
[39]
A. McWilliams. RFID: Technology, Applications, and Global Markets. BCC Research, 2016.
[40]
R. Miesen, F. Kirsch, and M. Vossiek. Holographic localization of passive uhf rfid transponders. In RFID (RFID), 2011 IEEE International Conference on, pages 32--37. IEEE, 2011.
[41]
L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil. Landmarc: indoor location sensing using active rfid. Wireless networks, 10(6):701--710, 2004.
[42]
P. V. Nikitin, R. Martinez, S. Ramamurthy, H. Leland, G. Spiess, and K. Rao. Phase based spatial identification of uhf rfid tags. In RFID, 2010 IEEE International Conference on, pages 102--109. IEEE, 2010.
[43]
P. V. Nikitin and K. S. Rao. Theory and measurement of backscattering from rfid tags. IEEE Antennas and Propagation Magazine, 48(6):212--218, 2006.
[44]
Occulus. Occulus Rift. https://www.oculus.com/rift/.
[45]
Omni-ID. Omni-ID Exo. www.omni-id.com.
[46]
A. Parr, R. Miesen, and M. Vossiek. Inverse sar approach for localization of moving rfid tags. In RFID (RFID), 2013 IEEE International Conference on, pages 104--109. IEEE, 2013.
[47]
M. Pelissier, J. Jantunen, B. Gomez, J. Arponen, G. Masson, S. Dia, J. Varteva, and M. Gary. A 112 mb/s full duplex remotely-powered impulse-uwb rfid transceiver for wireless nv-memory applications. IEEE Journal of Solid-State Circuits, 46(4):916--927, 2011.
[48]
L. Shangguan and K. Jamieson. The design and implementation of a mobile rfid tag sorting robot. In Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, pages 31--42. ACM, 2016.
[49]
Smartrac Group. Smartrac Shortdipole Inlay. www.smartrac-group.com.
[50]
W. L. Stutzman and G. A. Thiele. Antenna theory and design. John Wiley & Sons, 2012.
[51]
D. Vasisht, S. Kumar, and D. Katabi. Decimeter-level localization with a single wifi access point. In Usenix NSDI, 2016.
[52]
J. Wang, F. Adib, R. Knepper, D. Katabi, and D. Rus. RF-Compass: Robot Object Manipulation Using RFIDs. In ACM MobiCom, 2013.
[53]
J. Wang and D. Katabi. Dude, where's my card? rfid positioning that works with multipath and non-line of sight. In ACM SIGCOMM, 2013.
[54]
J. Wang, D. Vasisht, and D. Katabi. Rf-idraw: virtual touch screen in the air using rf signals. In ACM SIGCOMM, 2015.
[55]
Y. Xie, Z. Li, and M. Li. Precise power delay profiling with commodity wifi. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pages 53--64. ACM, 2015.
[56]
J. Xiong, K. Sundaresan, and K. Jamieson. Tonetrack: Leveraging frequency-agile radios for time-based indoor wireless localization. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pages 537--549. ACM, 2015.
[57]
L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: Real-time tracking of mobile rfid tags to high precision using cots devices. In Proceedings of the 20th annual international conference on Mobile computing and networking, pages 237--248. ACM, 2014.
[58]
C. Zhou and J. D. Griffin. Accurate phase-based ranging measurements for backscatter rfid tags. IEEE Antennas and Wireless Propagation Letters, 11:152--155, 2012.
[59]
J. Zhou and J. Shi. Rfid localization algorithms and applications--a review. Journal of intelligent manufacturing, 20(6):695--707, 2009.
[60]
J. Zhou, H. Zhang, and L. Mo. Two-dimension localization of passive rfid tags using aoa estimation. In Instrumentation and Measurement Technology Conference (I2MTC), 2011 IEEE, pages 1--5. IEEE, 2011.

Cited By

View all
  • (2024)Cost-Effective Localization of Mobile Robots Using Ultrasound Beacons and Differential Time-of-Flight MeasurementApplied Sciences10.3390/app1417759714:17(7597)Online publication date: 28-Aug-2024
  • (2024)A Self-Enhancement Solution for Standard RFIDs: Software-based Cross-protocol Communication and LocalizationProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997778:4(1-22)Online publication date: 21-Nov-2024
  • (2024)MagDesk: Interactive Tabletop Workspace Based on Passive Magnetic TrackingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997568:4(1-31)Online publication date: 21-Nov-2024
  • Show More Cited By

Index Terms

  1. Minding the Billions: Ultra-wideband Localization for Deployed RFID Tags

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      MobiCom '17: Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking
      October 2017
      628 pages
      ISBN:9781450349161
      DOI:10.1145/3117811
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 04 October 2017

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. RFID
      2. UWB
      3. battery-free
      4. localization
      5. smart environments

      Qualifiers

      • Research-article

      Conference

      MobiCom '17
      Sponsor:

      Acceptance Rates

      MobiCom '17 Paper Acceptance Rate 35 of 186 submissions, 19%;
      Overall Acceptance Rate 440 of 2,972 submissions, 15%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)271
      • Downloads (Last 6 weeks)38
      Reflects downloads up to 22 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Cost-Effective Localization of Mobile Robots Using Ultrasound Beacons and Differential Time-of-Flight MeasurementApplied Sciences10.3390/app1417759714:17(7597)Online publication date: 28-Aug-2024
      • (2024)A Self-Enhancement Solution for Standard RFIDs: Software-based Cross-protocol Communication and LocalizationProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997778:4(1-22)Online publication date: 21-Nov-2024
      • (2024)MagDesk: Interactive Tabletop Workspace Based on Passive Magnetic TrackingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997568:4(1-31)Online publication date: 21-Nov-2024
      • (2024)Willow: Practical WiFi Backscatter Localization with Parallel TagsProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661853(265-277)Online publication date: 3-Jun-2024
      • (2024)Demo: UWB localization and Tracking for XR ApplicationsProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661840(604-605)Online publication date: 3-Jun-2024
      • (2024)Enabling High-rate Backscatter Sensing at ScaleProceedings of the 30th Annual International Conference on Mobile Computing and Networking10.1145/3636534.3649351(124-138)Online publication date: 29-May-2024
      • (2024)ScribeProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314117:4(1-31)Online publication date: 12-Jan-2024
      • (2024)StageAR: Markerless Mobile Phone Localization for AR in Live Events2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR)10.1109/VR58804.2024.00119(1000-1010)Online publication date: 16-Mar-2024
      • (2024)Enabling Multi-Frequency and Wider-Band RFID Sensing Using COTS DeviceIEEE/ACM Transactions on Networking10.1109/TNET.2024.339497432:4(3591-3605)Online publication date: Aug-2024
      • (2024)Toward Robust RFID Localization via Mobile RobotIEEE/ACM Transactions on Networking10.1109/TNET.2024.337377032:4(2904-2919)Online publication date: Aug-2024
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      EPUB

      View this article in ePub.

      ePub

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media