Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3107411.3107505acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article
Public Access

Geometry Analysis for Protein Secondary Structures Matching Problem

Published: 20 August 2017 Publication History

Abstract

De novo modeling is a promising computational approach to model the structure of proteins using Cryo-Electron Microscopy data. Not all data produced is within a resolution that enables us to visualize the atomic-structure of the molecule. However, information like secondary structure locations is detectable. At an intermediate step in de novo modeling, the matching between these locations and the amino acid sequence segments that underlie these secondary structure elements needs to be addressed. Many tools have been developed to address this matching problem including DP-TOSS. In this paper, we propose a recast of DP-TOSS that incorporates a geometry-based analytical function to improve accuracy. A test of 15 proteins shows that our analytical function has a positive impact on the accuracy of DP-TOSS.

References

[1]
H. Zheng, K. B. Handing, M. D. Zimmerman, I. G. Shabalin, S. C. Almo, and W. Minor. 2015. X-ray crystallography over the past decade for novel drug discovery -- where are we heading next? Expert Opinion on Drug Discovery, 10, 9 (2015), 975--989.
[2]
A. R. Pearson and A. Mozzarelli. 2011. X-ray crystallography marries spectroscopy to unveil structure and function of biological macromolecules. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1814, 6 (2011), 731--733.
[3]
A.-H. Emwas. 2015. The Strengths and Weaknesses of NMR Spectroscopy and Mass Spectrometry with Particular Focus on Metabolomics Research. Methods in Molecular Biology. Springer New York. 161--193.
[4]
K. Mitra and J. Frank. 2006. Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps. Annual Review of Biophysics and Biomolecular Structure, 35 (2006), 299--317.
[5]
J. Frank. 2009. Single-particle reconstruction of biological macromolecules in electron microscopy -- 30 years. Quarterly Reviews of Biophysics, 42, 03 (2009), 139--158.
[6]
A. Fiser. 2010. Template-Based Protein Structure Modeling. Methods in Molecular Biology. Humana Press. 73--94.
[7]
M. Källberg, H. Wang, S. Wang, J. Peng, Z. Wang, H. Lu, and J. Xu. 2012. Template-based protein structure modeling using the RaptorX web server. Nat. Protocols, 7, 8 (2012), 1511--1522.
[8]
Y. J. Huang, B. Mao, J. M. Aramini, and G. T. Montelione. 2014. Assessment of template-based protein structure predictions in CASP10. Proteins: Structure, Function, and Bioinformatics, 82 (2014), 43--56.
[9]
D. E. Kim, D. Chivian, and D. Baker. 2004. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res, 32, Web Server issue (2004), W526--531.
[10]
K. T. Simons, C. Kooperberg, E. Huang, and D. Baker. 1997. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal of Molecular Biology, 268, 1 (1997), 209--225.
[11]
B. Adhikari, D. Bhattacharya, R. Cao, and J. Cheng. 2015. CONFOLD: Residue-residue contact-guided ab initio protein folding. Proteins: Structure, Function, and Bioinformatics, 83, 8 (2015), 1436--1449.
[12]
M. L. Baker, S. S. Abeysinghe, S. Schuh, R. A. Coleman, A. Abrams, M. P. Marsh, C. F. Hryc, T. Ruths, W. Chiu, and T. Ju. 2011. Modeling protein structure at near atomic resolutions with Gorgon. Journal of Structural Biology, 174, 2 (2011), 360--373.
[13]
S. Lindert, N. Alexander, N. Wötzel, M. Karaka, Phoebe L. Stewart, and J. Meiler. 2012. EM-Fold: De Novo Atomic-Detail Protein Structure Determination from Medium-Resolution Density Maps. Structure, 20, 3 (2012), 464--478.
[14]
S. Lindert, R. Staritzbichler, N. Wötzel, M. Karakas, P. L. Stewart, and J. Meiler. 2009. EM-fold: De novo folding of alpha-helical proteins guided by intermediate-resolution electron microscopy density maps. Structure, 17, 7 (2009), 990--1003.
[15]
J. He, Y. Lu, and E. Pontelli. 2004. A Parallel Algorithm for Helix Mapping between 3-D and 1-D Protein Structure using the Length Constraints. Lecture Notes in Computer Science, 3358 (2004), 746--756.
[16]
A. Dal Palu, E. Pontelli, J. He, and Y. Lu. 2006. A constraint logic programming approach to 3D structure determination of large protein complexes. In Proceedings of the 2006 ACM Symposium on Applied Computing. ACM, New York, NY, 131--136.
[17]
Y. Wu, M. Chen, M. Lu, Q. Wang, and J. Ma. 2005. Determining protein topology from skeletons of secondary structures. Journal of Molecular Biology, 350, 3 (2005), 571--586.
[18]
S. S. Abeysinghe and T. Ju. 2009. Interactive skeletonization of intensity volumes. Vis. Comput., 25, 5--7 (2009), 627--635.
[19]
K. Al Nasr, C. Liu, M. Rwebangira, L. Burge, and J. He. 2013. Intensity-Based Skeletonization of CryoEM Gray-Scale Images Using a True Segmentation-Free Algorithm. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 10, 5 (2013), 1289--1298.
[20]
K. Al Nasr, D. Ranjan, M. Zubair, L. Chen, and J. He. 2014. Solving the Secondary Structure Matching Problem in Cryo-EM De Novo Modeling Using a Constrained K-Shortest Path Graph Algorithm. Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 11, 2 (2014), 419--430.
[21]
F. DiMaio, M. D. Tyka, M. L. Baker, W. Chiu, and D. Baker. 2009. Refinement of protein structures into low-resolution density maps using rosetta. Journal of Molecular Biology, 392, 1 (2009), 181--190.
[22]
D. Si, S. Ji, K. Al Nasr, and J. He. 2012. A machine learning approach for the identification of protein secondary structure elements from cryoEM density maps. Biopolymers, 97 (2012), 698--708.
[23]
K. Lasker, O. Dror, M. Shatsky, R. Nussinov, and H. J. Wolfson. 2007. EMatch: discovery of high resolution structural homologues of protein domains in intermediate resolution cryo-EM maps. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4, 1 (2007), 28--39.
[24]
M. L. Baker, T. Ju, and W. Chiu. 2007. Identification of secondary structure elements in intermediate-resolution density maps. Structure, 15, 1 (2007), 7--19.
[25]
A. Del Palu, J. He, E. Pontelli, and Y. Lu. 2006. Identification of Alpha-Helices from Low Resolution Protein Density Maps. Proceeding of Computational Systems Bioinformatics Conference(CSB) (2006), 89--98.
[26]
D. Si and J. He. 2014. Tracing Beta Strands Using StrandTwister from Cryo-EM Density Maps at Medium Resolutions. Structure, 22, 11 (2014), 1665--1676.
[27]
G. Pollastri and A. McLysaght. 2005. Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics, 21, 8 (2005), 1719--1720.
[28]
D. T. Jones. 1999. Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292, 2 (1999), 195--202.
[29]
K. Al Nasr, D. Ranjan, M. Zubair, and J. He. 2011. Ranking Valid Topologies of the Secondary Structure elements Using a constraint Graph. Journal of Bioinformatics and Computational Biology, 9, 3 (2011), 415--430.
[30]
K. Al Nasr, L. Chen, D. Si, D. Ranjan, M. Zubair, and J. He. 2012. Building the initial chain of the proteins through de novo modeling of the cryo-electron microscopy volume data at the medium resolutions. In Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM, New York, NY, 490--497.
[31]
K. Al Nasr, W. Sun, and J. He. 2010. Structure prediction for the helical skeletons detected from the low resolution protein density map. BMC Bioinformatics, 11, Suppl 1 (2010), S44.
[32]
S. Abeysinghe, T. Ju, M. L. Baker, and W. Chiu. 2008. Shape modeling and matching in identifying 3D protein structures. Computer-Aided Design, 40, 6 (2008), 708--720.
[33]
G. Wang and R. L. Dunbrack Jr. 2003. PISCES: a protein sequence culling server. Bioinformatics, 19, 12 (2003), 1589--1591.
[34]
D. P. Doane and L. E. Seward. 2011. Measuring Skewness: A Forgotten Statistic? Journal of Statistics Education, 19, 2 (2011).
[35]
E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin. 2004. UCSF Chimera--A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 13 (2004), 1605--1612.
[36]
K. Al Nasr, C. Liu, M. Rwebangira, and L. I. Burge. 2013. A Graph Approach to Bridge the Gaps in Volumetric Electron Cryo-microscopy Skeletons. Lecture Notes in Computer Science. Springer Berlin Heidelberg. 211--223.

Cited By

View all
  • (2021)Combining Cryo-EM Density Map and Residue Contact for Protein Secondary Structure TopologiesMolecules10.3390/molecules2622704926:22(7049)Online publication date: 22-Nov-2021
  • (2018)Analytical Approaches to Improve Accuracy in Solving the Protein Topology ProblemMolecules10.3390/molecules2302002823:2(28)Online publication date: 23-Jan-2018

Index Terms

  1. Geometry Analysis for Protein Secondary Structures Matching Problem

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ACM-BCB '17: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics
      August 2017
      800 pages
      ISBN:9781450347228
      DOI:10.1145/3107411
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 20 August 2017

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Cryo-EM
      2. geometry analysis
      3. protein geometry
      4. protein secondary structure elements

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      BCB '17
      Sponsor:

      Acceptance Rates

      ACM-BCB '17 Paper Acceptance Rate 42 of 132 submissions, 32%;
      Overall Acceptance Rate 254 of 885 submissions, 29%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)25
      • Downloads (Last 6 weeks)5
      Reflects downloads up to 19 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2021)Combining Cryo-EM Density Map and Residue Contact for Protein Secondary Structure TopologiesMolecules10.3390/molecules2622704926:22(7049)Online publication date: 22-Nov-2021
      • (2018)Analytical Approaches to Improve Accuracy in Solving the Protein Topology ProblemMolecules10.3390/molecules2302002823:2(28)Online publication date: 23-Jan-2018

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media