Nothing Special   »   [go: up one dir, main page]

skip to main content
survey
Open access

Triclustering Algorithms for Three-Dimensional Data Analysis: A Comprehensive Survey

Published: 18 September 2018 Publication History

Abstract

Three-dimensional data are increasingly prevalent across biomedical and social domains. Notable examples are gene-sample-time, individual-feature-time, or node-node-time data, generally referred to as observation-attribute-context data. The unsupervised analysis of three-dimensional data can be pursued to discover putative biological modules, disease progression profiles, and communities of individuals with coherent behavior, among other patterns of interest. It is thus key to enhance the understanding of complex biological, individual, and societal systems. In this context, although clustering can be applied to group observations, its relevance is limited since observations in three-dimensional data domains are typically only meaningfully correlated on subspaces of the overall space. Biclustering tackles this challenge but disregards the third dimension. In this scenario, triclustering—the discovery of coherent subspaces within three-dimensional data—has been largely researched to tackle these problems. Despite the diversity of contributions in this field, there still lacks a structured view on the major requirements of triclustering, desirable forms of homogeneity (including coherency, structure, quality, locality, and orthonormality criteria), and algorithmic approaches. This work formalizes the triclustering task and its scope, introduces a taxonomy to categorize the contributions in the field, provides a comprehensive comparison of state-of-the-art triclustering algorithms according to their behavior and output, and lists relevant real-world applications. Finally, it highlights challenges and opportunities to advance the field of triclustering and its applicability to complex three-dimensional data analysis.

References

[1]
Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Ina Müller-Gorman, and Arthur Zimek. 2006. Finding hierarchies of subspace clusters. In European Conference on Principles of Data Mining and Knowledge Discovery. Springer, 446--453.
[2]
H. A. Ahmed, P. Mahanta, D. K. Bhattacharyya, J. K. Kalita, and A. Ghosh. 2011. Intersected coexpressed subcube miner: An effective triclustering algorithm. In 2011 World Congress on Information and Communication Technologies (WICT’11). IEEE, 846--851.
[3]
Faris Alqadah and Raj Bhatnagar. 2008. An effective algorithm for mining 3-clusters in vertically partitioned data. In IC on Information and Knowledge Management. ACM, 1103--1112.
[4]
David Amar, Daniel Yekutieli, Adi Maron-Katz, Talma Hendler, and Ron Shamir. 2015. A hierarchical Bayesian model for flexible module discovery in three-way time-series data. Bioinformatics 31, 12 (2015), i17--i26.
[5]
Ira Assent, Emmanuel Müller, Ralph Krieger, Timm Jansen, and Thomas Seidl. 2008. Pleiades: Subspace clustering and evaluation. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 666--671.
[6]
Arvind Balasubramanian, Jun Wang, and Balakrishnan Prabhakaran. 2016. Discovering multidimensional motifs in physiological signals for personalized healthcare. IEEE Journal of Selected Topics in Signal Processing 10, 5 (2016), 832--841.
[7]
Arindam Banerjee, Sugato Basu, and Srujana Merugu. 2007. Multi-way clustering on relation graphs. In SDM, Vol. 7. SIAM, 225--334.
[8]
Ron Bekkerman, Ran El-Yaniv, and Andrew McCallum. 2005. Multi-way distributional clustering via pairwise interactions. In Proceedings of the 22nd International Conference on Machine Learning. ACM, 41--48.
[9]
Amir Ben-Dor, Benny Chor, Richard Karp, and Zohar Yakhini. 2003. Discovering local structure in gene expression data: The order-preserving submatrix problem. Journal of Computational Biology 10, 3--4 (2003), 373--384.
[10]
Anirban Bhar, Martin Haubrock, Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Edgar Wingender. 2012. Δ-TRIMAX: Extracting triclusters and analysing coregulation in time series gene expression data. In International Workshop on Algorithms in Bioinformatics. Springer, 165--177.
[11]
Anirban Bhar, Martin Haubrock, Anirban Mukhopadhyay, and Edgar Wingender. 2015. Multiobjective triclustering of time-series transcriptome data reveals key genes of biological processes. BMC Bioinformatics 16, 1 (2015), 1.
[12]
Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. 2013. Recommender systems survey. Knowledge-Based systems 46 (2013), 109--132.
[13]
Doruk Bozdağ, Ashwin S. Kumar, and Umit V. Catalyurek. 2010. Comparative analysis of biclustering algorithms. In BCB. ACM, New York, 265--274.
[14]
Loïc Cerf, Jérémy Besson, Kim-Ngan T. Nguyen, and Jean-François Boulicaut. 2013. Closed and noise-tolerant patterns in n-ary relations. Data Mining and Knowledge Discovery 26, 3 (2013), 574--619.
[15]
Loïc Cerf, Jérémy Besson, Céline Robardet, and Jean-François Boulicaut. 2008. Data peeler: Contraint-based closed pattern mining in n-ary relations. In SDM, Vol. 8. SIAM, 37--48.
[16]
Loïc Cerf, Jérémy Besson, Céline Robardet, and Jean-François Boulicaut. 2009. Closed patterns meet n-ary relations. ACM Transactions on Knowledge Discovery from Data (TKDD) 3, 1 (2009), 3.
[17]
Yizong Cheng and George M. Church. 2000. Biclustering of expression data. In Intelligent Systems for Molecular Biology. AAAI Press, 93--103.
[18]
Antonio D. Chiaravalloti, Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. 2006. An information-theoretic framework for high-order co-clustering of heterogeneous objects. In European Conference on Machine Learning. Springer, 598--605.
[19]
Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182--197.
[20]
Duygu Dede and Hasan Oğul. 2013. A three-way clustering approach to cross-species gene regulation analysis. In Symposium on Innovations in Intelligent Systems and Applications (INISTA’13). IEEE, 1--5.
[21]
Duygu Dede and Hasan Oğul. 2014. TriClust: A tool for cross-species analysis of gene regulation. Molecular Informatics 33, 5 (2014), 382--387.
[22]
Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn J. Keogh. 2008. Querying and mining of time series data: Experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment 1, 2 (2008), 1542--1552.
[23]
A. Donders, G. van der Heijden, T. Stijnen, and K. Moons. 2006. Review: A gentle introduction to imputation of missing values.Clinical Epidemiology 59, 10 (2006), 1087--1091.
[24]
Neng Fan, Nikita Boyko, and Panos M. Pardalos. 2010. Recent advances of data biclustering with application in computational neuroscience. In Computational Neuroscience. Springer, 85--112.
[25]
Gang Fang, Majda Haznadar, Wen Wang, Haoyu Yu, Michael Steinbach, Timothy R. Church, William S. Oetting, Brian Van Ness, and Vipin Kumar. 2012. High-order SNP combinations associated with complex diseases: Efficient discovery, statistical power and functional interactions. Plos One 7, 4 (2012), 1--15. Retrieved from
[26]
King-Sun Fu and J. K. Mui. 1981. A survey on image segmentation. Pattern Recognition 13, 1 (1981), 3--16.
[27]
Bin Gao, Tie-Yan Liu, and Wei-Ying Ma. 2006. Star-structured high-order heterogeneous data co-clustering based on consistent information theory. In 6th International Conference on Data Mining (ICDM’06). IEEE, 880--884.
[28]
Georg K. Gerber, Robin D. Dowell, Tommi S. Jaakkola, and David K. Gifford. 2007. Automated discovery of functional generality of human gene expression programs. PLoS Computational Biology 3, 8 (2007), e148.
[29]
D. V. Gnatyshak. 2015. A single-pass triclustering algorithm. Automatic Documentation and Mathematical Linguistics 49, 1 (2015), 27--41.
[30]
Dmitry Gnatyshak, Dmitry I. Ignatov, Alexander Semenov, and Jonas Poelmans. 2012. Gaining insight in social networks with biclustering and triclustering. In International Conference on Business Informatics Research. Springer, 162--171.
[31]
Joana Gonçalves. 2013. Integrative Mining of Gene Regulation and Its Perturbations. Ph.D. Dissertation. Instituto Superior Técnico, Universidade de Lisboa, Lisboa.
[32]
Joana P. Gonçalves and Sara C. Madeira. 2014. LateBiclustering: Efficient heuristic algorithm for time-lagged bicluster identification. IEEE/ACM Transactions on Computational Biology and Bioinformatics 11, 5 (2014), 801--813.
[33]
Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. 2010. Coclustering multiple heterogeneous domains: Linear combinations and agreements. IEEE Transactions on Knowledge and Data Engineering 22, 12 (2010), 1649--1663.
[34]
Romain Guigourès, Marc Boullé, and Fabrice Rossi. 2015. Discovering patterns in time-varying graphs: A triclustering approach. Advances in Data Analysis and Classification 1 (2015), 1--28.
[35]
David Gutiérrez-Avilés and Cristina Rubio-Escudero. 2014a. LSL: A new measure to evaluate triclusters. In 2014 IEEE IC on Bioinformatics and Biomedicine (BIBM’14). IEEE, 30--37.
[36]
David Gutiérrez-Avilés and Cristina Rubio-Escudero. 2014b. Mining 3D patterns from gene expression temporal data: A new tricluster evaluation measure. Scientific World Journal 2014 (2014), 1--16.
[37]
David Gutiérrez-Avilés and Cristina Rubio-Escudero. 2015. MSL: A measure to evaluate three-dimensional patterns in gene expression data. Evolutionary Bioinformation Online 11 (2015), 121.
[38]
David Gutiérrez-Avilés and Cristina Rubio-Escudero. 2016. TRIQ: A Comprehensive Evaluation Measure for Triclustering Algorithms. Springer International Publishing, Cham, 673--684.
[39]
David Gutiérrez-Avilés, Cristina Rubio-Escudero, Francisco Martínez-Álvarez, and José C. Riquelme. 2014. TriGen: A genetic algorithm to mine triclusters in temporal gene expression data. Neurocomputing 132 (2014), 42--53.
[40]
Daniel F. Hayes. 2013. OMICS-based personalized oncology: If it is worth doing, it is worth doing well! BMC Medicine 11, 1 (2013), 221.
[41]
Zhaoshui He, Andrzej Cichocki, Shengli Xie, and Kyuwan Choi. 2010. Detecting the number of clusters in n-way probabilistic clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 11 (2010), 2006--2021.
[42]
Rui Henriques. 2016. Learning from High-Dimensional Data Using Local Descriptive Models. Ph.D. Dissertation. Instituto Superior Tecnico, Universidade de Lisboa, Lisboa.
[43]
Rui Henriques, Cláudia Antunes, and Sara C. Madeira. 2015a. Generative modeling of repositories of health records for predictive tasks. Data Mining and Knowledge Discovery 29, 4 (2015), 999--1032.
[44]
Rui Henriques, Claudia Antunes, and Sara C. Madeira. 2015b. A structured view on pattern mining-based biclustering. Pattern Recognition 48, 12 (2015), 3941--3958.
[45]
Rui Henriques and Sara C. Madeira. 2014. BicPAM: Pattern-based biclustering for biomedical data analysis. Algorithms for Molecular Biology 9, 1 (2014), 27.
[46]
Rui Henriques and Sara C. Madeira. 2015. Biclustering with flexible plaid models to unravel interactions between biological processes. IEEE/ACM Transactions on Computational Biology and Bioinformatics 12, 4 (2015), 738--752.
[47]
Rui Henriques and Sara C. Madeira. 2016. BicNET: Flexible module discovery in large-scale biological networks using biclustering. Algorithms for Molecular Biology 11, 1 (2016), 1--30.
[48]
Rui Henriques and Sara C. Madeira. 2018. BSig: Evaluating the statistical significance of biclustering solutions. Data Mining and Knowledge Discovery 32, 1 (2018), 124--161.
[49]
Joke Heylen, Iven Van Mechelen, Eiko I. Fried, and Eva Ceulemans. 2016. Two-mode K-spectral centroid analysis for studying multivariate longitudinal profiles. Chemometrics and Intelligent Laboratory Systems 154 (2016), 194--206.
[50]
John Hopcroft, Omar Khan, Brian Kulis, and Bart Selman. 2004. Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101, Suppl 1 (2004), 5249--5253.
[51]
Zhen Hu and Raj Bhatnagar. 2010. Algorithm for discovering low-variance 3-clusters from real-valued datasets. In 2010 IEEE International Conference on Data Mining. IEEE, 236--245.
[52]
Zhen Hu and Raj Bhatnagar. 2011. Discovery of versatile temporal subspace patterns in 3-D datasets. In 2011 IEEE 11th International Conference on Data Mining. IEEE, 1092--1097.
[53]
Dmitry I. Ignatov, D. V. Gnatyshak, S. O. Kuznetsov, and Boris G. Mirkin. 2015. Triadic formal concept analysis and triclustering: Searching for optimal patterns. Machine Learning 101, 1--3 (2015), 271--302.
[54]
Dmitry I. Ignatov and Sergei O. Kuznetsov. 2009. Frequent itemset mining for clustering near duplicate web documents. In IC on Conceptual Structures. Springer, 185--200.
[55]
J. Ihmels, S. Bergmann, and N. Barkai. 2004. Defining transcription modules using large-scale gene expression data. Bioinformatics 20, 13 (2004), 1993--2003.
[56]
Robert Jäschke, Andreas Hotho, Christoph Schmitz, Bernhard Ganter, and Gerd Stumme. 2006. TRIAS-An algorithm for mining iceberg tri-lattices. In ICDM, Vol. 6. 907--911.
[57]
Liping Ji, Kian-Lee Tan, and Anthony K. H. Tung. 2006. Mining frequent closed cubes in 3D datasets. In Proceedings of the 32nd International Conference on Very Large Data Bases. VLDB Endowment, 811--822.
[58]
Xiaonan Ji, James Bailey, and Guozhu Dong. 2007. Mining minimal distinguishing subsequence patterns with gap constraints. Knowledge and Information Systems 11, 3 (2007), 259--286.
[59]
Daxin Jiang, Jian Pei, Murali Ramanathan, Chun Tang, and Aidong Zhang. 2004. Mining coherent gene clusters from gene-sample-time microarray data. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'04). ACM, Seattle, WA, USA, 430--439.
[60]
Haoliang Jiang, Shuigeng Zhou, Jihong Guan, and Ying Zheng. 2006. gTRICLUSTER: A more general and effective 3d clustering algorithm for gene-sample-time microarray data. In International Workshop on Data Mining for Biomedical Applications. Springer, 48--59.
[61]
Inuk Jung, Kyuri Jo, Hyejin Kang, Hongryul Ahn, Youngjae Yu, and Sun Kim. 2017. TimesVector: A vectorized clustering approach to the analysis of time series transcriptome data from multiple phenotypes. Bioinformatics 33, 23 (2017), 3827--3835.
[62]
Tulika Kakati, Hasin A. Ahmed, Dhruba K. Bhattacharyya, and Jugal K. Kalita. 2016. A fast gene expression analysis using parallel biclustering and distributed triclustering approach. In ICTCS. ACM, New York, Article 122, 6 pages. Retrieved from
[63]
Sabine Krolak-Schwerdt, Peter Orlik, and Bernhard Ganter. 1994. TRIPAT: A model for analyzing three-mode binary data. In Information Systems and Data Analysis. Springer, 298--307.
[64]
L. Lazzeroni and A. Owen. 2002. Plaid models for gene expression data. Statistica Sinica 12 (2002), 61--86.
[65]
Fritz Lehmann and Rudolf Wille. 1995. A triadic approach to formal concept analysis. In International Conference on Conceptual Structures. Springer, 32--43.
[66]
Ao Li and David Tuck. 2009. An effective tri-clustering algorithm combining expression data with gene regulation information. Gene Regulation and Systems Biology 3 (2009), 49.
[67]
Wenyuan Li, Chun-Chi Liu, Tong Zhang, Haifeng Li, Michael S. Waterman, and Xianghong Jasmine Zhou. 2011. Integrative analysis of many weighted co-expression networks using tensor computation. PLoS Computational Biology 7, 6 (2011), e1001106.
[68]
Xutao Li, Yunming Ye, Michael Ng, and Qingyao Wu. 2013. MultiFacTV: Module detection from higher-order time series biological data. BMC Genomics 14, Suppl 4 (2013), S2.
[69]
Yifeng Li and Alioune Ngom. 2010. Classification of clinical gene-sample-time microarray expression data via tensor decomposition methods. In CIBB. Springer, 275--286.
[70]
Yu-Ru Lin, Jimeng Sun, Paul Castro, Ravi Konuru, Hari Sundaram, and Aisling Kelliher. 2009. Metafac: Community discovery via relational hypergraph factorization. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 527--536.
[71]
Junwan Liu, Zhoujun Li, Xiaohua Hu, and Yiming Chen. 2008. Multi-objective evolutionary algorithm for mining 3D clusters in gene-sample-time microarray data. In IEEE International Conference on Granular Computing (GrC’08). IEEE, 442--447.
[72]
Yu-Cheng Liu, Chao-Hui Lee, Wei-Chung Chen, J. W. Shin, Hui-Huang Hsu, and Vincent S. Tseng. 2010. A novel method for mining temporally dependent association rules in three-dimensional microarray datasets. In 2010 International Computer Symposium (ICS’10). IEEE, 759--764.
[73]
Bo Long, Xiaoyun Wu, Zhongfei Mark Zhang, and Philip S. Yu. 2006. Unsupervised learning on k-partite graphs. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 317--326.
[74]
Bo Long, Zhongfei Mark Zhang, Xiaoyun Wu, and Philip S. Yu. 2006. Spectral clustering for multi-type relational data. In IC Conference on Machine Learning. ACM, 585--592.
[75]
Bo Long, Zhongfei Mark Zhang, and Philip S. Yu. 2007. A probabilistic framework for relational clustering. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 470--479.
[76]
Sara C. Madeira and Arlindo L. Oliveira. 2004. Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1, 1 (2004), 24--45.
[77]
Sara C. Madeira and Arlindo L. Oliveira. 2009. A polynomial time biclustering algorithm for finding approximate expression patterns in gene expression time series. Algorithms for Molecular Biology 4, 1 (2009), 8.
[78]
Sara C. Madeira, Miguel Nobre Parreira Cacho Teixeira, Isabel Sá-Correia, and Arlindo Oliveira. 2010. Identification of regulatory modules in time series gene expression data using a linear time biclustering algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1 (2010), 153--165.
[79]
P. Mahanta, H. A. Ahmed, D. K. Bhattacharyya, and Jugal K. Kalita. 2011. Triclustering in gene expression data analysis: A selected survey. In 2011 2nd National Conference on Emerging Trends and Applications in Computer Science (NCETACS’11). IEEE, 1--6.
[80]
Shawn Mankad and George Michailidis. 2014. Biclustering three-dimensional data arrays with plaid models. Journal of Computational and Graphical Statistics 23, 4 (2014), 943--965.
[81]
Francisco Martínez-Álvarez, David Gutiérrez-Avilés, Antonio Morales-Esteban, Jorge Reyes, José L. Amaro-Mellado, and Cristina Rubio-Escudero. 2015. A novel method for seismogenic zoning based on triclustering: Application to the iberian peninsula. Entropy 17, 7 (2015), 5000--5021.
[82]
Tim McInerney and Demetri Terzopoulos. 1996. Deformable models in medical image analysis: A survey. Medical Image Analysis 1, 2 (1996), 91--108.
[83]
Jia Meng, Shou-Jiang Gao, and Yufei Huang. 2009. Enrichment constrained time-dependent clustering analysis for finding meaningful temporal transcription modules. Bioinformatics 25, 12 (2009), 1521--1527.
[84]
David Minnen, Charles Isbell, Irfan Essa, and Thad Starner. 2007. Detecting subdimensional motifs: An efficient algorithm for generalized multivariate pattern discovery. In 7th IEEE International Conference on Data Mining (ICDM’07). IEEE, 601--606.
[85]
Boris G. Mirkin and Andrey V. Kramarenko. 2011. Approximate bicluster and tricluster boxes in the analysis of binary data. In International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing. Springer, 248--256.
[86]
Gabriela Moise and Jörg Sander. 2008a. Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 533--541.
[87]
Gabriela Moise and Jörg Sander. 2008b. Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering. In Proceedings of the 14th ACM SIGKDD IC on Knowledge Discovery and Data Mining. ACM, New York, 533--541. Retrieved from
[88]
Carla S. Möller-Levet, Simon N. Archer, Giselda Bucca, Emma E. Laing, Ana Slak, Renata Kabiljo, June C. Y. Lo, Nayantara Santhi, Malcolm von Schantz, Colin P. Smith, and Derk-Jan Dijk. 2013. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. National Academy of Sciences 110, 12 (2013), E1132--E1141.
[89]
N. Narmadha and R. Rathipriya. 2016. Triclustering: An evolution of clustering. In 2016 Online IC on Green Engineering and Technologies (IC-GET’16). 1--4.
[90]
Victor A. Padilha and Ricardo J. G. B. Campello. 2017. A systematic comparative evaluation of biclustering techniques. BMC Bioinformatics 18, 1 (2017), 55.
[91]
Gergely Palla, Albert-László Barabási, and Tamás Vicsek. 2007. Quantifying social group evolution. Nature 446, 7136 (2007), 664--667.
[92]
Evangelos E. Papalexakis, Nicholas D. Sidiropoulos, and Rasmus Bro. 2013. From k-means to higher-way co-clustering: Multilinear decomposition with sparse latent factors. IEEE Transactions on Signal Processing 61, 2 (2013), 493--506.
[93]
Grant P. Parnell, Benjamin M. Tang, Marek Nalos, Nicola J. Armstrong, Stephen J. Huang, David R. Booth, and Anthony S. McLean. 2013. Identifying key regulatory genes in the whole blood of septic patients to monitor underlying immune dysfunctions. Shock 40, 3 (2013), 166--174.
[94]
Anne Patrikainen and Marina Meila. 2006. Comparing subspace clusterings. IEEE TKDE 18, 7 (2006), 902--916.
[95]
Mohsen Pourahmadi and Siamak Noorbaloochi. 2016. Multivariate time series analysis of neuroscience data: Some challenges and opportunities. Current Opinion in Neurobiology 37 (2016), 12--15.
[96]
Amela Prelić, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter Bühlmann, Wilhelm Gruissem, Lars Hennig, Lothar Thiele, and Eckart Zitzler. 2006. A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 9 (2006), 1122--1129.
[97]
Jan Schepers, Iven Van Mechelen, and Eva Ceulemans. 2006. Three-mode partitioning. Computational Statistics 8 Data Analysis 51, 3 (2006), 1623--1642.
[98]
Amnon Shashua, Ron Zass, and Tamir Hazan. 2006. Multi-way Clustering Using Super-Symmetric Non-negative Tensor Factorization. Springer, Berlin, 595--608.
[99]
Kelvin Sim, Zeyar Aung, and Vivekanand Gopalkrishnan. 2010a. Discovering correlated subspace clusters in 3D continuous-valued data. In 2010 IEEE International Conference on Data Mining. IEEE, 471--480.
[100]
Kelvin Sim, Ardian Kristanto Poernomo, and Vivekanand Gopalkrishnan. 2010b. MininG actionable subspace clusters in sequential data. In SDM. SIAM, 442--453.
[101]
Kelvin Sim, Ghim-Eng Yap, David R. Hardoon, Vivekanand Gopalkrishnan, Gao Cong, and Suryani Lukman. 2013. Centroid-based actionable 3D subspace clustering. IEEE Transactions on Knowledge and Data Engineering 25, 6 (2013), 1213--1226.
[102]
Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu. 2007. Graphscope: Parameter-free mining of large time-evolving graphs. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 687--696.
[103]
Jochen Supper, Martin Strauch, Dierk Wanke, Klaus Harter, and Andreas Zell. 2007. EDISA: Extracting biclusters from multiple time-series of gene expression profiles. BMC Bioinformatics 8, 1 (2007), 334.
[104]
Jinhui Tang, Xiangbo Shu, Guo-Jun Qi, Zechao Li, Meng Wang, Shuicheng Yan, and Ramesh Jain. 2017. Tri-clustered tensor completion for social-aware image tag refinement. IEEE Transactions on Pattern Analysis and Machine Intelligence 39, 8 (2017), 1662--1674.
[105]
Giridhar Tatavarty, Raj Bhatnagar, and Barrington Young. 2007. Discovery of temporal dependencies between frequent patterns in multivariate time series. In IEEE Symposium on Computational Intelligence and Data Mining, 2007 (CIDM’07). IEEE, 688--696.
[106]
Alain B. Tchagang, Sieu Phan, Fazel Famili, Heather Shearer, Pierre Fobert, Yi Huang, Jitao Zou, Daiqing Huang, Adrian Cutler, Ziying Liu, and Youlian Pan. 2012. Mining biological information from 3D short time-series gene expression data: The OPTricluster algorithm. BMC Bioinformatics 13, 1 (2012), 1.
[107]
Alain Tremeau and Nathalie Borel. 1997. A region growing and merging algorithm to color segmentation. Pattern Recognition 30, 7 (1997), 1191--1203.
[108]
Alireza Vahdatpour, Navid Amini, and Majid Sarrafzadeh. 2009. Toward unsupervised activity discovery using multi-dimensional motif detection in time series. In IJCAI, Vol. 9. 1261--1266.
[109]
Sharon Vaisvaser, Tamar Lin, Roee Admon, Ilana Podlipsky, Yona Greenman, Naftali Stern, Eyal Fruchter, Ilan Wald, Daniel Pine, Ricardo Tarrasch, Yair Bar-Haim, and Talma Hendler. 2013. Neural traces of stress: Cortisol related sustained enhancement of amygdala-hippocampal functional connectivity.
[110]
Peter Waltman, Thadeous Kacmarczyk, A. Bate, D. Kearns, D. Reiss, P. Eichenberger, and Richard Bonneau. 2010. Multi-species integrative biclustering. Genome Biology 11, 9 (2010), 1.
[111]
Guoren Wang, Linjun Yin, Yuhai Zhao, and Keming Mao. 2010. Efficiently mining time-delayed gene expression patterns. IEEE Transactions on Systems, Man, and Cybernetics, Part B 40, 2 (2010), 400--411.
[112]
Shu Wang, Robin R. Gutell, and Daniel P. Miranker. 2007. Biclustering as a method for RNA local multiple sequence alignment. Bioinformatics 23, 24 (2007), 3289--3296.
[113]
Xiaojing Wu, Raul Zurita-Milla, Menno-Jan Kraak, and Emma Izquierdo-Verdiguier. 2017. Clustering-based approaches to the exploration of spatio-temporal data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS’17), 1387--1391.
[114]
Xiaojing Wu, Raul Zurita-Milla, Emma Izquierdo Verdiguier, and Menno-Jan Kraak. 2018. Triclustering georeferenced time series for analyzing patterns of intra-annual variability in temperature. Annals of the American Association of Geographers 108, 1 (2018), 71--87.
[115]
Xin Xu, Ying Lu, Kian-Lee Tan, and Anthony K. H. Tung. 2009. Finding time-lagged 3D clusters. In 2009 IEEE 25th International Conference on Data Engineering. IEEE, 445--456.
[116]
Maxim Yurov and Dmitry I. Ignatov. 2017. Turning krimp into a triclustering technique on sets of attribute-condition pairs that compress. In International Joint Conference on Rough Sets. Springer, 558--569.
[117]
Lizhuang Zhao and Mohammed J. Zaki. 2005. Tricluster: An effective algorithm for mining coherent clusters in 3d microarray data. In ACM SIGMOD International Conf. on Management of Data. ACM, 694--705.
[118]
Jiayu Zhou, Fei Wang, Jianying Hu, and Jieping Ye. 2014. From micro to macro: Data driven phenotyping by densification of longitudinal electronic medical records. In Proceedings of the 20th ACM SIGKDD IC on Knowledge Discovery and Data Mining. ACM, 135--144.
[119]
Qingbiao Zhou, Guangdong Xu, and Yu Zong. 2009. Web co-clustering of usage network using tensor decomposition. In IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies (WI-IAT’09), Vol. 3. IEEE, 311--314.
[120]
Hongyuan Zhu, Fanman Meng, Jianfei Cai, and Shijian Lu. 2016. Beyond pixels: A comprehensive survey from bottom-up to semantic image segmentation and cosegmentation. Journal of Visual Communication and Image Representation 34, Suppl. C (2016), 12--27.
[121]
Sergey Zudin, Dmitry V. Gnatyshak, and Dmitry I. Ignatov. 2015. Putting OAC-triclustering on MapReduce. In Proceedings of the 12th IC on Concept Lattices and Their Applications. CEUR Workshop Proceedings, 47--58.

Cited By

View all
  • (2024)A Comprehensive Survey on Biclustering-based Collaborative FilteringACM Computing Surveys10.1145/367472356:12(1-32)Online publication date: 22-Jun-2024
  • (2024)An evolutionary triclustering approach to discover electricity consumption patterns in FranceProceedings of the 39th ACM/SIGAPP Symposium on Applied Computing10.1145/3605098.3636034(386-394)Online publication date: 8-Apr-2024
  • (2024)Biclustering data analysis: a comprehensive surveyBriefings in Bioinformatics10.1093/bib/bbae34225:4Online publication date: 15-Jul-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 51, Issue 5
September 2019
791 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3271482
  • Editor:
  • Sartaj Sahni
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 September 2018
Accepted: 01 March 2018
Revised: 01 January 2018
Received: 01 September 2017
Published in CSUR Volume 51, Issue 5

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Triclustering
  2. multidimensional clustering
  3. multivariate time series analysis
  4. subspace clustering
  5. three-dimensional data analysis

Qualifiers

  • Survey
  • Research
  • Refereed

Funding Sources

  • INESC-ID
  • LASIGE
  • Fundação para a Ciência e Tecnologia (FCT)

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)490
  • Downloads (Last 6 weeks)56
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Comprehensive Survey on Biclustering-based Collaborative FilteringACM Computing Surveys10.1145/367472356:12(1-32)Online publication date: 22-Jun-2024
  • (2024)An evolutionary triclustering approach to discover electricity consumption patterns in FranceProceedings of the 39th ACM/SIGAPP Symposium on Applied Computing10.1145/3605098.3636034(386-394)Online publication date: 8-Apr-2024
  • (2024)Biclustering data analysis: a comprehensive surveyBriefings in Bioinformatics10.1093/bib/bbae34225:4Online publication date: 15-Jul-2024
  • (2024)Temporal stratification of amyotrophic lateral sclerosis patients using disease progression patternsNature Communications10.1038/s41467-024-49954-y15:1Online publication date: 8-Jul-2024
  • (2024)Comprehensive assessment of triclustering algorithms for three-way temporal data analysisPattern Recognition10.1016/j.patcog.2024.110303150:COnline publication date: 1-Jun-2024
  • (2024)TriSig: Evaluating the statistical significance of triclustersPattern Recognition10.1016/j.patcog.2023.110231149(110231)Online publication date: May-2024
  • (2023)Multi-Resolution 3D Rendering for High-Performance Web ARSensors10.3390/s2315688523:15(6885)Online publication date: 3-Aug-2023
  • (2023)Triclustering Implementation Using Hybrid δ-Trimax Particle Swarm Optimization and Gene Ontology Analysis on Three-Dimensional Gene Expression DataMathematics10.3390/math1119421911:19(4219)Online publication date: 9-Oct-2023
  • (2023)G-bic: generating synthetic benchmarks for biclusteringBMC Bioinformatics10.1186/s12859-023-05587-424:1Online publication date: 6-Dec-2023
  • (2023)Triclustering-based classification of longitudinal data for prognostic prediction: targeting relevant clinical endpoints in amyotrophic lateral sclerosisScientific Reports10.1038/s41598-023-33223-x13:1Online publication date: 15-Apr-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media