Nothing Special   »   [go: up one dir, main page]

skip to main content
survey

Analysis of Online Social Network Connections for Identification of Influential Users: Survey and Open Research Issues

Published: 31 January 2018 Publication History

Abstract

Online social networks (OSNs) are structures that help users to interact, exchange, and propagate new ideas. The identification of the influential users in OSNs is a significant process for accelerating the propagation of information that includes marketing applications or hindering the dissemination of unwanted contents, such as viruses, negative online behaviors, and rumors. This article presents a detailed survey of influential users’ identification algorithms and their performance evaluation approaches in OSNs. The survey covers recent techniques, applications, and open research issues on analysis of OSN connections for identification of influential users.

References

[1]
A. Abbas, M. U. Khan, M. Ali, S. U. Khan, and L. T. A. Yang. 2015. Cloud based framework for identification of influential health experts from Twitter. In 15th International Conference on Scalable Computing and Communications (ScalCom).
[2]
M. A. Al-Garadi, K. D. Varathan, and S. D. Ravana. 2017. Identification of influential spreaders in online social networks using interaction weighted K-core decomposition method. Physica A: Statistical Mechanics and its Applications 468, 278--288.
[3]
M. A. AL-Garadi, K. D. Varathan, S. D. Ravana, E. Ahmed, and V. Chang. 2016. Identifying the influential spreaders in multilayer interactions of online social networks. Journal of Intelligent and Fuzzy Systems 31, 2721--2735.
[4]
R. Albert, H. Jeong, and A.-L. Barabási. 2000. Error and attack tolerance of complex networks. Nature 406, 378--382.
[5]
K. Alfalahi, Y. Atif, and A. Abraham. 2014. Models of influence in online social networks. International Journal of Intelligent Systems 29, 161--183.
[6]
F. Altarelli, A. Braunstein, L. Dall'asta, J. R. Wakeling, and R. Zecchina. 2014. Containing epidemic outbreaks by message-passing techniques. Physical Review X 4, 021024.
[7]
F. Altarelli, A. Braunstein, L. Dall'asta, and R. Zecchina. 2013. Optimizing spread dynamics on graphs by message passing. Journal of Statistical Mechanics: Theory and Experiment 2013, P09011.
[8]
S. Aral. 2012. Social science: Poked to vote. Nature 489, 212--214.
[9]
S. Aral, L. Muchnik, and A. Sundararajan. 2013. Engineering social contagions: Optimal network seeding in the presence of homophily. Network Science 1, 125--153.
[10]
S. Aral and D. Walker. 2012. Identifying influential and susceptible members of social networks. Science 337, 337--341.
[11]
E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. 2011. Everyone's an influencer: Quantifying influence on Twitter. Proceedings of the 4th ACM International Conference on Web Search and Data Mining. ACM, 65--74.
[12]
E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. 2012. The role of social networks in information diffusion. Proceedings of the 21st International Conference on World Wide Web. ACM, 519--528.
[13]
A.-L. Barabási and R. Albert. 1999. Emergence of scaling in random networks. Science 286, 509--512.
[14]
V. Batagelj and M. Zaversnik. 2003. An O (m) algorithm for cores decomposition of networks. ArXiv Preprint cs/0310049.
[15]
F. Battiston, V. Nicosia, and V. Latora. 2014. Structural measures for multiplex networks. Physical Review E 89, 032804.
[16]
A. Bavelas. 1950. Communication patterns in task-oriented groups. Journal of the Acoustical Society of America. 22, 6 (1950), 725--730.
[17]
C. Bigonha, T. N. Cardoso, M. M. Moro, M. A. Gonçalves, and V. A. Almeida. 2012. Sentiment-based influence detection on Twitter. Journal of the Brazilian Computer Society 18, 169--183.
[18]
D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research 3, 993--1022.
[19]
P. Bonacich. 2007. Some unique properties of eigenvector centrality. Social Networks 29, 555--564.
[20]
R. M. Bond, C. J. Fariss, J. J. Jones, A. D. Kramer, C. Marlow, J. E. Settle, and J. H. Fowler. 2012. A 61-million-person experiment in social influence and political mobilization. Nature 489, 295--298.
[21]
S. P. Borgatti and M. G. Everett. 2006. A graph-theoretic perspective on centrality. Social Networks 28, 466--484.
[22]
J. Borge-Holthoefer and Y. Moreno. 2012. Absence of influential spreaders in rumor dynamics. Physical Review E 85, 026116.
[23]
M. Bouguessa. 2011. An unsupervised approach for identifying spammers in social networks. 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI’11). IEEE, 832--840.
[24]
U. Brandes. 2001. A faster algorithm for betweenness centrality*. Journal of Mathematical Sociology 25, 163--177.
[25]
S. Brin and L. Page. 2012. Reprint of: The anatomy of a large-scale hypertextual web search engine. Computer Networks 56, 3825--3833.
[26]
C. Budak, D. Agrawal, and A. El Abbadi. 2011. Limiting the spread of misinformation in social networks. Proceedings of the 20th International Conference on World Wide Web. ACM, 665--674.
[27]
S. Catanese, P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti. 2012. Extraction and analysis of Facebook friendship relations. Computational Social Networks. Springer, 291--324.
[28]
D. Centola and M. Macy. 2007. Complex contagions and the weakness of long ties. American Journal of Sociology 113, 702--734.
[29]
M. Cha, F. Benevenuto, H. Haddadi, and K. Gummadi. 2012. The world of connections and information flow in Twitter. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 42, 991--998.
[30]
M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi. 2010. Measuring user influence in Twitter: The million follower fallacy. Icwsm, 10, 30.
[31]
W. Chai, W. Xu, M. Zuo, and X. Wen. 2013. ACQR: A novel framework to identify and predict influential users in micro-blogging. PACIS. 20.
[32]
D. H. Chau, S. Pandit, S. Wang, and C. Faloutsos. 2007. Parallel crawling for online social networks. In Proceedings of the 16th International Conference on World Wide Web. ACM, 1283--1284.
[33]
D.-B. Chen, R. Xiao, and A. Zeng. 2014. Predicting the evolution of spreading on complex networks. Scientific Reports 4, 6108.
[34]
D. Chen, L. Lü, M.-S. Shang, Y.-C. Zhang, and T. Zhou. 2012a. Identifying influential nodes in complex networks. Physica a: Statistical Mechanics and Its Applications 391, 1777--1787.
[35]
K. Chen, P. Zhu, and Y. Xiong. 2013. Mining spam accounts with user influence. In International Conference on Information Science and Cloud Computing Companion (ISCC-C’13). IEEE, 167--173.
[36]
W. Chen, S. Cheng, X. He, and F. Jiang. 2012b. Influencerank: An efficient social influence measurement for millions of users in microblog. In 2nd International Conference on Cloud and Green Computing (CGC’12). IEEE, 563--570.
[37]
W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu, D. Rincon, X. Sun, Y. Wang, W. Wei, and Y. Yuan. 2011. Influence maximization in social networks when negative opinions may emerge and propagate. SDM. SIAM, 379--390.
[38]
W. Chen, Y. Wang, and S. Yang. 2009. Efficient influence maximization in social networks. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 199--208.
[39]
J.-J. Cheng, Y. Liu, B. Shen, and W.-G. Yuan. 2013. An epidemic model of rumor diffusion in online social networks. The European Physical Journal B 86, 1--7.
[40]
S. Cobb. 2017. RoT: Ransomware of Things. cdn2-prodint.esetstatic.com 2017. https://cdn2prodint.esetstatic.com/ESET/US/Newsroom/2017/03/ESET_Trends-and-Prediction_2017_Ransomware.pdf.
[41]
V. Colizza, A. Flammini, M. A. Serrano, and A. Vespignani. 2006. Detecting rich-club ordering in complex networks. Nature Physics 2, 110--115.
[42]
C. H. Comin and L. Da Fontoura Costa. 2011. Identifying the starting point of a spreading process in complex networks. Physical Review E 84, 056105.
[43]
D. Cosley, D. P. Huttenlocher, J. M. Kleinberg, X. Lan, and S. Suri. 2010. Sequential influence models in social networks. ICWSM, 10, 26.
[44]
J.-V. Cossu, N. Dugué, and V. Labatut. 2015. Detecting real-world influence through Twitter. ArXiv Preprint ArXiv:1506.05903.
[45]
M. De Domenico, A. Solé-Ribalta, E. Omodei, S. Gómez, and A. Arenas. 2015. Ranking in interconnected multilayer networks reveals versatile nodes. Nature Communications 6, 6868.
[46]
Z.-Y. Ding, Y. Jia, B. Zhou, Y. Han, L. He, and J.-F. Zhang. 2013. Measuring the spreadability of users in microblogs. Journal of Zhejiang University SCIENCE C 14, 701--710.
[47]
B. Doerr, M. Fouz, and T. Friedrich. 2012. Why rumors spread so quickly in social networks. Communications of the ACM 55, 70--75.
[48]
P. Domingos. 2005. Mining social networks for viral marketing. IEEE Intelligent Systems, 20, 80--82.
[49]
P. Domingos. 2012. A few useful things to know about machine learning. Communications of the ACM 55, 78--87.
[50]
S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. 2006. K-core organization of complex networks. Physical Review Letters 96, 040601.
[51]
R. O. Duda, P. E. Hart, and D. G. Stork. 2012. Pattern Classification, John Wiley 8 Sons, Hoboken, NJ.
[52]
N. Dufty. 2012. Using social media to build community disaster resilience. Australian Journal of Emergency Management 27, 40.
[53]
D. Easley and J. Kleinberg. 2010. Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, New York, NY.
[54]
H. Ebel, L.-I. Mielsch, and S. Bornholdt. 2002. Scale-free topology of e-mail networks. Physical Review E 66, 035103.
[55]
K. Faust. 1997. Centrality in affiliation networks. Social Networks 19, 157--191.
[56]
P. E. Brown and J. Feng. 2011. Measuring user influence on twitter using modified k-shell decomposition. In Fifth International AAAI Conference on Weblogs and Social Media.
[57]
M. Fire, R. Goldschmidt, and Y. Elovici. 2014. Online social networks: Threats and solutions. IEEE Communications Surveys 8 Tutorials 16, 2019--2036.
[58]
C. Francalanci and A. Hussain. 2015. A visual analysis of social influencers and influence in the tourism domain. Information and Communication Technologies in Tourism 2015. Springer, New York, NY.
[59]
L. C. Freeman. 1977. A set of measures of centrality based on betweenness. Sociometry 35--41.
[60]
L. C. Freeman. 1979. Centrality in social networks conceptual clarification. Social Networks 1, 215--239.
[61]
C. Gao, J. Liu, and N. Zhong. 2011a. Network immunization and virus propagation in email networks: experimental evaluation and analysis. Knowledge and Information Systems 27, 253--279.
[62]
C. Gao, J. Liu, and N. Zhong. 2011b. Network immunization with distributed autonomy-oriented entities. IEEE Transactions on Parallel and Distributed Systems 22, 1222--1229.
[63]
H. Gao, G. Barbier, and R. Goolsby. 2011c. Harnessing the crowdsourcing power of social media for disaster relief. IEEE Intelligent Systems 26, 10--14.
[64]
A. Garas, F. Schweitzer, and S. Havlin. 2012. A k-shell decomposition method for weighted networks. New Journal of Physics 14, 083030.
[65]
S. Garg, T. Gupta, N. Carlsson, and A. Mahanti. 2009. Evolution of an online social aggregation network: an empirical study. Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference. ACM, 315--321.
[66]
S. Gensler, F. Völckner, Y. Liu-Thompkins, and C. Wiertz. 2013. Managing brands in the social media environment. Journal of Interactive Marketing 27, 242--256.
[67]
G. Ghoshal and A.-L. Barabási. 2011. Ranking stability and super-stable nodes in complex networks. Nature Communications 2, 394.
[68]
E. Gilbert and K. Karahalios. 2009. Predicting tie strength with social media. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 211--220.
[69]
M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. 2010. Walking in Facebook: A case study of unbiased sampling of OSNs. Proceedings of IEEE Infocom. IEEE, 1--9.
[70]
S. Goel, D. J. Watts, and D. G. Goldstein. 2012. The structure of online diffusion networks. Proceedings of the 13th ACM Conference on Electronic Commerce. ACM, 623--638.
[71]
J. Goldenberg, S. Han, D. R. Lehmann, and J. W. Hong. 2009. The role of hubs in the adoption process. Journal of Marketing 73, 1--13.
[72]
S. Gomez, A. Diaz-Guilera, J. Gomez-Gardeñes, C. J. Perez-Vicente, Y. Moreno, and A. Arenas. 2013. Diffusion dynamics on multiplex networks. Physical Review Letters 110, 028701.
[73]
S. González-Bailón, J. Borge-Holthoefer, A. Rivero, and Y. Moreno. 2011. The dynamics of protest recruitment through an online network. Scientific Reports, 1, 197.
[74]
A. Goyal, F. Bonchi, and L. V. Lakshmanan. 2010. Learning influence probabilities in social networks. In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. ACM, 241--250.
[75]
M. S. Granovetter. 1973. The strength of weak ties. American Journal of Sociology 1360--1380.
[76]
T. L. Griffiths and M. Steyvers. 2004. Finding scientific topics. In Proceedings of the National Academy of Sciences 101, 5228--5235.
[77]
A. Guille, H. Hacid, C. Favre, and D. A. Zighed. 2013. Information diffusion in online social networks: A survey. ACM SIGMOD Record 42, 17--28.
[78]
A. Halu, R. J. Mondragón, P. Panzarasa, and G. Bianconi. 2013. Multiplex pagerank. PLoS ONE 8, 10 (2013), e78293.
[79]
T. Haveliwala. 1999. Efficient computation of PageRank. Stanford University Technical Report.
[80]
H. He. 2007. Eigenvectors and reconstruction. The Electronic Journal of Combinatorics 14, N14.
[81]
H. W. Hethcote. 2000. The mathematics of infectious diseases. SIAM Review 42, 599--653.
[82]
G. E. Hinton, S. Osindero, and Y.-W. Teh. 2006. A fast learning algorithm for deep belief nets. Neural Computation 18, 1527--1554.
[83]
J. Y. Ho and M. Dempsey. 2010. Viral marketing: Motivations to forward online content. Journal of Business Research 63, 1000--1006.
[84]
G. Hogben. 2007. Security issues and recommendations for online social networks. ENISA Position Paper.
[85]
S. Hong and D. Nadler. 2011. Does the early bird move the polls?: The use of the social media tool ‘Twitter’ by US politicians and its impact on public opinion. Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times. ACM, 182--186.
[86]
J. Howison and A. Wiggins. 2011. Validity issues in the use of social network analysis with digital trace data Journal of the Association for Information Systems 12, 767--797.
[87]
M. Hu, S. Liu, F. Wei, Y. Wu, J. Stasko, and K.-L. Ma. 2012. Breaking news on Twitter. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2751--2754.
[88]
J. L. Iribarren and E. Moro. 2009. Impact of human activity patterns on the dynamics of information diffusion. Physical Review Letters 103, 038702.
[89]
L. B. Jabeur, L. Tamine, and M. Boughanem. 2012. Active microbloggers: Identifying influencers, leaders and discussers in microblogging networks. In String Processing and Information Retrieval. Springer, 111--117.
[90]
A. Java, P. Kolari, T. Finin, and T. Oates. 2006. Modeling the spread of influence on the blogosphere. In Proceedings of the 15th International World Wide Web Conference. 22--26.
[91]
J. Jiang, C. Wilson, X. Wang, W. Sha, P. Huang, Y. Dai, and B. Y. Zhao. 2013. Understanding latent interactions in online social networks. ACM Transactions on the Web 7, 18.
[92]
Q. Jiang, G. Song, C. Gao, Y. Wang, W. Si, and K. Xie. 2011. Simulated annealing based influence maximization in social networks. In 25th AAAI Conference on Artificial Intelligence, 2011.
[93]
P. S. Jothi, M. Neelamalar, and R. S. Prasad. 2011. Analysis of social networking sites: A study on effective communication strategy in developing brand communication. Journal of Media and Communication Studies 3, 234.
[94]
G. Katsimpras, D. Vogiatzis, and G. Paliouras. Determining Influential users with supervised random walks. Proceedings of the 24th International Conference on World Wide Web Companion. International World Wide Web Conferences Steering Committee, 787--792.
[95]
E. Katz and P. F. Lazarsfeld. 1955. Personal Influence, The Part Played by People in the Flow of Mass Communications. Transaction Publishers, Piscataway, NJ.
[96]
L. Katz. 1953. A new status index derived from sociometric analysis. Psychometrika 18, 39--43.
[97]
D. Kempe, J. Kleinberg, and É. Tardos. 2003. Maximizing the spread of influence through a social network. Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 137--146.
[98]
M. S. Khan, A. W. A. Wahab, T. Herawan, G. Mujtaba, S. Danjuma, and M. A. AL-Garadi. 2016a. Virtual community detection through the association between prime nodes in online social networks and its application to ranking algorithms. IEEE Access 4, 9614--9624.
[99]
M. U. S. Khan, M. Ali, A. Abbas, S. Khan, and A. Zomaya. 2016b. Segregating spammers and unsolicited bloggers from genuine experts on Twitter. IEEE Transactions on Dependable and Secure Computing.
[100]
E. S. Kim and S. S. Han. 2009. An analytical way to find influencers on social networks and validate their effects in disseminating social games. International Conference on Advances in Social Network Analysis and Mining (ASONAM'09). IEEE, 41--46.
[101]
J. Kim, S.-K. Kim, and H. Yu. 2013. Scalable and parallelizable processing of influence maximization for large-scale social networks? IEEE 29th International Conference on Data Engineering (ICDE’13). IEEE, 266--277.
[102]
M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and H. A. Makse. 2010. Identification of influential spreaders in complex networks. Nature Physics 6, 888--893.
[103]
C. Kohlschütter, P.-A. Chirita, and W. Nejdl. 2006. Efficient parallel computation of PageRank. ECIR, 2006. Springer, 241--252.
[104]
G. E. Kreindler and H. P. Young. 2014. Rapid innovation diffusion in social networks. Proceedings of the National Academy of Sciences 111, 10881--10888.
[105]
F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová, and P. Zhang. 2013. Spectral redemption in clustering sparse networks. Proceedings of the National Academy of Sciences 110, 20935--20940.
[106]
S. Kulviwat, G. C. Bruner, and O. AL-Shuridah. 2009. The role of social influence on adoption of high tech innovations: The moderating effect of public/private consumption. Journal of Business Research 62, 706--712.
[107]
H. Kwak, C. Lee, H. Park, and S. Moon. 2010. What is Twitter, a social network or a news media? In Proceedings of the 19th International Conference on World Wide Web. ACM, 591--600.
[108]
S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang. 2013. Prominent features of rumor propagation in online social media. In IEEE 13th International Conference on Data Mining (ICDM’13). IEEE, 1103--1108.
[109]
G. Lawyer. 2015. Understanding the influence of all nodes in a network. Scientific Reports 5, 8665.
[110]
K. Lerman and R. Ghosh. 2010. Information contagion: An empirical study of the spread of news on digg and Twitter social networks. ICWSM 10, 90--97.
[111]
J. Leskovec, L. A. Adamic, and B. A. Huberman. 2007a. The dynamics of viral marketing. ACM Transactions on the Web 1, 5.
[112]
J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Vanbriesen, and N. Glance. 2007b. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 420--429.
[113]
J. Letierce, A. Passant, J. Breslin, and S. Decker. 2010. Understanding how Twitter is used to spread scientific messages. In Proceedings of the Web Science Conference (WebSci10): Extending the Frontiers of Society On-Line. Raleigh, NC, USA.
[114]
H. Li, S. S. Bhowmick, A. Sun, and J. Cui. 2015a. Conformity-aware influence maximization in online social networks. The VLDB Journal—The International Journal on Very Large Data Bases 24, 117--141.
[115]
H. Li, J.-T. Cui, and J.-F. Ma. 2015b. Social influence study in online networks: A three-level review. Journal of Computer Science and Technology 30, 184--199.
[116]
Q. Li, T. Zhou, L. Lü, and D. Chen. 2014. Identifying influential spreaders by weighted LeaderRank. Physica A: Statistical Mechanics and its Applications 404, 47--55.
[117]
H. Liao, M. S. Mariani, M. Medo, Y.-C. Zhang, and M.-Y. Zhou. 2017. Ranking in evolving complex networks. Physics Reports 689 (2017) 1–54.
[118]
D. Liu and X. Chen. Rumor propagation in online social networks like Twitter--a simulation study. In 3rd International Conference on Multimedia Information Networking and Security (MINES’11). IEEE, 278--282.
[119]
J.-G. Liu, Z.-M. Ren, and Q. Guo. 2013. Ranking the spreading influence in complex networks. Physica A: Statistical Mechanics and its Applications, 392, 4154--4159.
[120]
N. Liu, L. Li, G. XU, and Z. Yang. 2014. Identifying domain-dependent influential microblog users: A post-feature based approach. In 28th AAAI Conference on Artificial Intelligence, 2014.
[121]
Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási. 2011. Controllability of complex networks. Nature 473, 167--173.
[122]
Y. Liu, M. Tang, T. Zhou, and Y. Do. 2015a. Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition. Scientific Reports 5, 9602.
[123]
Y. Liu, M. Tang, T. Zhou, and Y. Do. 2015b. Improving the accuracy of the k-shell method by removing redundant links-from a perspective of spreading dynamics. ArXiv Preprint ArXiv:1505.07354.
[124]
L. Lü, D. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C. Zhang, and T. Zhou. 2016. Vital nodes identification in complex networks. Physics Reports 650, 1--63.
[125]
L. Lü, Y.-C. Zhang, C. H. Yeung, and T. Zhou. 2011. Leaders in social networks, the delicious case. PloS One 6, e21202.
[126]
D. D. Luxton, J. D. June, and J. M. Fairall. 2012. Social media and suicide: A public health perspective. American Journal of Public Health 102, S195--S200.
[127]
S. Ma, G. Chen, L. Fu, W. Wu, X. Tian, J. Zhao, and X. Wang. 2017. Seeking powerful information initial spreaders in online social networks: A dense group perspective. Wireless Networks 1--19.
[128]
M. S. Mariani, M. Medo, and Y.-C. Zhang. 2015. Ranking nodes in growing networks: When PageRank fails. Scientific Reports 5, 16181.
[129]
Y. Mei, Y. Zhong, and J. Yang. Finding and analyzing principal features for measuring user influence on Twitter. In IEEE 1st International Conference on Big Data Computing Service and Applications (BigDataService’15). IEEE, 478--486.
[130]
F. Mishna, C. Cook, T. Gadalla, J. Daciuk, and S. Solomon. 2010. Cyber bullying behaviors among middle and high school students. American Journal of Orthopsychiatry 80, 362--374.
[131]
A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. 2007. Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. ACM, 29--42.
[132]
F. Morone and H. A. Makse. 2015. Influence maximization in complex networks through optimal percolation. Nature 524, 65--68.
[133]
F. Morone, B. Min, L. Bo, R. Mari, and H. A. Makse. 2016. Collective Influence algorithm to find influencers via optimal percolation in massively large social media. Scientific Reports 6, 30062.
[134]
L. Muchnik, S. Pei, L. C. Parra, S. D. Reis, J. S. Andrade Jr., S. Havlin, and H. A. Makse. 2013. Origins of power-law degree distribution in the heterogeneity of human activity in social networks. Scientific Reports 3, 1783.
[135]
T. Nepusz and T. Vicsek. 2012. Controlling edge dynamics in complex networks. Nature Physics 8, 568--573.
[136]
T. H. Nguyen and B. K. Szymanski. 2013. Social ranking techniques for the web. In IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM’13). IEEE, 49--55.
[137]
R. Pastor-Satorras and A. Vespignani. 2001. Epidemic spreading in scale-free networks. Physical Review Letters 86, 3200.
[138]
R. Pastor-Satorras and A. Vespignani. 2002. Immunization of complex networks. Physical Review E 65, 036104.
[139]
S. Pei and H. A. Makse. 2013. Spreading dynamics in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2013, P12002.
[140]
S. Pei, L. Muchnik, J. S. Andrade Jr., Z. Zheng, and H. A. Makse. 2014. Searching for superspreaders of information in real-world social media. Scientific Reports, 4, 5547.
[141]
S. Pei, L. Muchnik, S. Tang, Z. Zheng, and H. A. Makse. 2015. Exploring the complex pattern of information spreading in online blog communities.
[142]
F. Probst, D.-K. L. Grosswiele, and D.-K. R. Pfleger. 2013. Who will lead and who will follow: Identifying Influential users in online social networks. Business 8 Information Systems Engineering 5, 179--193.
[143]
S. Räbiger and M. Spiliopoulou. 2015. A framework for validating the merit of properties that predict the influence of a Twitter user. Expert Systems with Applications 42, 2824--2834.
[144]
F. Radicchi. 2011. Who is the best player ever? A complex network analysis of the history of professional tennis. PloS One 6, e17249.
[145]
F. Radicchi and C. Castellano. 2016. Leveraging percolation theory to single out influential spreaders in networks. Physical Review E 93, 062314.
[146]
J. Ratkiewicz, M. Conover, M. Meiss, B. Gonçalves, A. Flammini, and F. Menczer. 2011. Detecting and tracking political abuse in social media. In ICWSM.
[147]
M. Richardson and P. Domingos. 2002. Mining knowledge-sharing sites for viral marketing. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 61--70.
[148]
F. Riquelme and P. González-cantergiani. 2016. Measuring user influence on Twitter: A survey. Information Processing 8 Management, 52, 949--975.
[149]
D. M. Romero, W. Galuba, S. Asur, and B. A. Huberman. 2011. Influence and passivity in social media. In Proceedings of the 20th International Conference Companion on World Wide Web. ACM, 113--114.
[150]
K. Saito, M. Kimura, K. Ohara, and H. Motoda. 2012. Efficient discovery of influential nodes for SIS models in social networks. Knowledge and Information Systems 30, 613--635.
[151]
T. Sakaki, M. Okazaki, and Y. Matsuo. 2010. Earthquake shakes Twitter users: Real-time event detection by social sensors. Proceedings of the 19th International Conference on World Wide Web. ACM, 851--860.
[152]
X. T. Sen Pei, J. Shaman, F. Morone, and H. A. Makse. 2017. Efficient collective influence maximization in cascading processes with first-order transitions. Scientific Reports 7, 45240.
[153]
A. Sheikhahmadi and M. A. Nematbakhsh. 2017. Identification of multi-spreader users in social networks for viral marketing. Journal of Information Science 43, 412--423.
[154]
A. Silva, S. Guimarães, W. Meira Jr., and M. Zaki. 2013. ProfileRank: Finding relevant content and influential users based on information diffusion. In Proceedings of the 7th Workshop on Social Network Mining and Analysis. ACM, 2.
[155]
P. Singh, S. Sreenivasan, B. K. Szymanski, and G. Korniss. 2013. Threshold-limited spreading in social networks with multiple initiators. Scientific Reports 3, 2330.
[156]
X. Song, Y. Chi, K. Hino, and B.Tseng. 2007a. Identifying opinion leaders in the blogosphere. In Proceedings of the 16th ACM Conference on Conference on Information and Knowledge Management. ACM, 971--974.
[157]
X. Song, Y. Chi, K. Hino, and B. L. Tseng. 2007b. Information flow modeling based on diffusion rate for prediction and ranking. Proceedings of the 16th International Conference on World Wide Web. ACM, 191--200.
[158]
X. Song, B. L. Tseng, C.-Y. Lin, and M.-T. Sun. 2006. Personalized recommendation driven by information flow. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 509--516.
[159]
S. Stieglitz and L. Dang-Xuan. 2013. Social media and political communication: A social media analytics framework. Social Network Analysis and Mining 3, 1277--1291.
[160]
S. H. Strogatz. 2001. Exploring complex networks. Nature 410, 268--276.
[161]
M. R. Subramani and B. Rajagopalan. 2003. Knowledge-sharing and influence in online social networks via viral marketing. Communications of the ACM 46, 300--307.
[162]
H. Sueki. 2015. The association of suicide-related Twitter use with suicidal behaviour: A cross-sectional study of young Internet users in Japan. Journal of Affective Disorders 170, 155--160.
[163]
Q. Sun, N. Wang, Y. Zhou, and Z. Luo. 2016. Identification of influential online social network users based on multi-features. International Journal of Pattern Recognition and Artificial Intelligence 30, 1659015.
[164]
C. W. Tan, P.-D. Yu, C.-K. Lai, W. Zhang, and H.-L. Fu. 2016. Optimal detection of influential spreaders in online social networks. In Annual Conference on Information Science and Systems (CISS’16). IEEE, 145--150.
[165]
X. Tang and C. C. Yang. 2012. Ranking user influence in healthcare social media. ACM Transactions on Intelligent Systems and Technology 3, 73.
[166]
X. Teng, S. Pei, F. Morone, and H. A. Makse. 2016. Collective influence of multiple spreaders evaluated by tracing real information flow in large-scale social networks. Scientific Reports 6, 36043.
[167]
D. Tunkelang. 2009. A Twitter analog to PageRank. Retrieved December 7, 2017 from http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-PageRank.
[168]
T. W. Valente. 1995. Network Models of the Diffusion of Innovations. Hampton Press, Cresskill, NJ.
[169]
W. Vollenbroek, S. De Vries, E. Constantinides, and P. Kommers. 2014. Identification of influence in social media communities. International Journal of Web Based Communities 4, 10, 280--297.
[170]
Y. Wang, G. Cong, G. Song, and K. Xie. 2010. Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1039--1048.
[171]
D. J. Watts and P. S. Dodds. 2007. Influentials, networks, and public opinion formation. Journal of Consumer Research 34, 441--458.
[172]
D. J. Watts, J. Peretti, and M. Frumin. 2007. Viral Marketing For The Real World. Harvard Business Publishing, Brighton, MA.
[173]
B. Wei, J. Liu, D. Wei, C. Gao, and Y. Deng. 2015. Weighted k-shell decomposition for complex networks based on potential edge weights. Physica A: Statistical Mechanics and its Applications 420, 277--283.
[174]
T. Weinberg. 2009. The New Community Rules: Marketing on the Social Web. O'Reilly Media, Sebastopol, CA.
[175]
S. Wen, J. Jiang, Y. Xiang, S. Yu, W. Zhou, and W. Jia. 2014. To shut them up or to clarify: Restraining the spread of rumors in online social networks. IEEE Transactions on Parallel and Distributed Systems 25, 3306--3316.
[176]
J. Weng, E.-P. Lim, J. Jiang, and Q. He. 2010. TwitterRank: Finding topic-sensitive influential twitterers. Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. ACM, 261--270.
[177]
F. Wu, B. A. Huberman, L. A. Adamic, and J. R. Tyler. 2004. Information flow in social groups. Physica A: Statistical Mechanics and its Applications, 337, 327--335.
[178]
Y. Xia, X. Ren, Z. Peng, J. Zhang, and L. She. 2016. Effectively identifying the influential spreaders in large-scale social networks. Multimedia Tools Applications 75, 8829--8841.
[179]
R. Xiang, J. Neville, and M. Rogati. 2010. Modeling relationship strength in online social networks. In Proceedings of the 19th International Conference on World Wide Web. ACM, 981--990.
[180]
C. Xiao, Y. Zhang, X. Zeng and Y. Wu. 2013. Predicting user influence in social media. Journal of Networks 8, 2649--2655.
[181]
Y. Yamaguchi, T. Takahashi, T. Amagasa, and H. Kitagawa. 2010. Turank: Twitter user ranking based on user-tweet graph analysis. In Web Information Systems Engineering (WISE’10). Springer.
[182]
G. Yan, G. Chen, S. Eidenbenz, and N. Li. 2011. Malware propagation in online social networks: nature, dynamics, and defense implications. In Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security. ACM, 196--206.
[183]
L. Yang, Y. Qiao, Z. Liu, J. Ma, and X. Li. 2016. Identifying opinion leader nodes in online social networks with a new closeness evaluation algorithm. Soft Computing 1--12.
[184]
W. Yang, H. Wang, and Y. Yao. 2015. An immunization strategy for social network worms based on network vertex influence. Communications, China 12, 154--166.
[185]
D. Yates and S. Paquette. 2011. Emergency knowledge management and social media technologies: A case study of the 2010 Haitian earthquake. International Journal of Information Management 31, 6--13.
[186]
S. Ye, J. Lang, and F. Wu. 2010. Crawling online social graphs. In 12th International Asia-Pacific Web Conference (APWEB’10). IEEE, 236--242.
[187]
J. Yin, A. Lampert, M. Cameron, B. Robinson, and R. Power. 2012. Using social media to enhance emergency situation awareness. IEEE Intelligent Systems 27, 52--59.
[188]
Z. Yin and Y. Zhang. 2012. Measuring pair-wise social influence in microblog. In International Conference on Privacy, Security, Risk and Trust (PASSAT’12) and International Conference on Social Computing (SocialCom’12). IEEE, 502--507.
[189]
M. Zanin, D. Papo, P. A. Sousa, E. Menasalvas, A. Nicchi, E. Kubik, and S. Boccaletti. 2016. Combining complex networks and data mining: why and how. Physics Reports 635, 1--44.
[190]
A. Zeng and C.-J. Zhang. 2013. Ranking spreaders by decomposing complex networks. Physics Letters A 377, 1031--1035.
[191]
Z.-K. Zhang, C. Liu, X.-X. Zhan, X. Lu, C.-X. Zhang, and Y.-C. Zhang. 2016. Dynamics of information diffusion and its applications on complex networks. Physics Reports 651, 1--34.
[192]
K. Zhao, G. E. Greer, J. Yen, P. Mitra, and K. Portier. 2014a. Leader identification in an online health community for cancer survivors: a social network-based classification approach. Information Systems and e-Business Management 1--17.
[193]
K. Zhao, J. Yen, G. Greer, B. Qiu, P. Mitra, and K. Portier. 2014b. Finding influential users of online health communities: A new metric based on sentiment influence. Journal of the American Medical Informatics Association 21, e212--e218.
[194]
L. Zhao, Q. Wang, J. Cheng, Y. Chen, J. Wang, and W. Huang. 2011. Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal. Physica A: Statistical Mechanics and its Applications 390, 2619--2625.
[195]
H. Zhu, C. Huang, and H. Li. 2014. MPPM: Malware propagation and prevention model in online SNS. In IEEE International Conference on Communications Workshops (ICC’14). IEEE, 682--687.
[196]
Z. Zhu. 2013. Discovering the influential users oriented to viral marketing based on online social networks. Physica A: Statistical Mechanics and its Applications 392, 3459--3469.
[197]
K. Zhuang, H. Shen, and H. Zhang. 2017. User spread influence measurement in microblog. Multimedia Tools and Applications 76, 3169--3185.
[198]
C. C. Zou, D. Towsley, and W. Gong. 2007. Modeling and simulation study of the propagation and defense of Internet e-mail worms. IEEE Transactions on Dependable and Secure Computing 4, 105--118.

Cited By

View all
  • (2024)Information quality and students’ academic performance: the mediating roles of perceived usefulness, entertainment and social media usageSmart Learning Environments10.1186/s40561-024-00329-211:1Online publication date: 9-Oct-2024
  • (2024)Stability of a Fractional Opinion Formation Model with and without Leadership Using the New Generalized Hattaf Fractional DerivativeMathematical Problems in Engineering10.1155/2024/66529932024(1-9)Online publication date: 23-Apr-2024
  • (2024)Spatio-Temporal Graph Hubness Propagation Model for Dynamic Brain Network ClassificationIEEE Transactions on Medical Imaging10.1109/TMI.2024.336301443:6(2381-2394)Online publication date: Jun-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 51, Issue 1
January 2019
743 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3177787
  • Editor:
  • Sartaj Sahni
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 31 January 2018
Accepted: 01 October 2017
Revised: 01 October 2017
Received: 01 October 2016
Published in CSUR Volume 51, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Influential users
  2. OSNs
  3. big data
  4. complex networks
  5. identification algorithms
  6. social media

Qualifiers

  • Survey
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)75
  • Downloads (Last 6 weeks)16
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Information quality and students’ academic performance: the mediating roles of perceived usefulness, entertainment and social media usageSmart Learning Environments10.1186/s40561-024-00329-211:1Online publication date: 9-Oct-2024
  • (2024)Stability of a Fractional Opinion Formation Model with and without Leadership Using the New Generalized Hattaf Fractional DerivativeMathematical Problems in Engineering10.1155/2024/66529932024(1-9)Online publication date: 23-Apr-2024
  • (2024)Spatio-Temporal Graph Hubness Propagation Model for Dynamic Brain Network ClassificationIEEE Transactions on Medical Imaging10.1109/TMI.2024.336301443:6(2381-2394)Online publication date: Jun-2024
  • (2024)Analyzing the Characteristics of Ego-Network Structures of Influential Twitter Users2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC)10.1109/COMPSAC61105.2024.00280(1776-1781)Online publication date: 2-Jul-2024
  • (2024)On the friendship paradox and inversity: A network property with applications to privacy-sensitive network interventionsProceedings of the National Academy of Sciences10.1073/pnas.2306412121121:30Online publication date: 19-Jul-2024
  • (2024)Prediction of influential nodes in social networks based on local communities and users’ reaction informationScientific Reports10.1038/s41598-024-66277-614:1Online publication date: 9-Jul-2024
  • (2024)Multiscale dynamic graph signal analysisSignal Processing10.1016/j.sigpro.2024.109519222(109519)Online publication date: Sep-2024
  • (2024)OlapGN: A multi-layered graph convolution network-based model for locating influential nodes in graph networksKnowledge-Based Systems10.1016/j.knosys.2023.111163283(111163)Online publication date: Jan-2024
  • (2024)A survey on influence maximization modelsExpert Systems with Applications10.1016/j.eswa.2024.123429248(123429)Online publication date: Aug-2024
  • (2024)XAI for Society 5.0: Requirements, opportunities, and challenges in the current contextXAI Based Intelligent Systems for Society 5.010.1016/B978-0-323-95315-3.00008-5(269-293)Online publication date: 2024
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media