Nothing Special   »   [go: up one dir, main page]

skip to main content
survey

A Survey of Modelling Trends in Temporal GIS

Published: 17 April 2018 Publication History

Abstract

The main achievements of spatio-temporal modelling in the field of Geographic Information Science that spans the past three decades are surveyed. This article offers an overview of: (i) the origins and history of Temporal Geographic Information Systems (T-GIS); (ii) relevant spatio-temporal data models proposed; (iii) the evolution of spatio-temporal modelling trends; and (iv) an analysis of the future trends and developments in T-GIS. It also presents some current theories and concepts that have emerged from the research performed, as well as a summary of the current progress and the upcoming challenges and potential research directions for T-GIS. One relevant result of this survey is the proposed taxonomy of spatio-temporal modelling trends, which classifies 186 modelling proposals surveyed from more than 1,450 articles.

Supplementary Material

a30-siabato-apndx.pdf (siabato.zip)
Supplemental movie, appendix, image and software files for, A Survey of Modelling Trends in Temporal GIS

References

[1]
S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. 1997. The lorel query language for semistructured data. Int. J. Dig. Libr. 1, 1, 68--88.
[2]
E. Allen, G. Edwards, and Y. Bédard. 1995. Qualitative causal modeling in temporal GIS. In Spatial Information Theory. A Theoretical Basis for GIS, A. U. Frank and W. Kuhn (Eds.). Springer Verlag, Berlin, 397--412.
[3]
J. F. Allen. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11, 832--843.
[4]
J. F. Allen. 1984. Towards a general theory of action and time. Artific. Intell. 23, 2, 123--154.
[5]
L. An, M.-H. Tsou, S. E. Crook, Y. Chun, B. Spitzberg, J. M. Gawron, and D. K. Gupta. 2015. Space-Time analysis: Concepts, quantitative methods, and future directions. Ann. Assoc. Amer. Geogr. 105, 5, 891--914.
[6]
W. G. Aref and H. Samet. 1991. Extending a DBMS with spatial operations. In Advances in Spatial Databases, O. Günther and H.-J. Schek (Eds.). Springer Verlag, Berlin, 299--318.
[7]
G. Ariav. 1986. A temporally oriented data model. ACM Trans. Database Syst. 11, 4, 499--527.
[8]
M. P. Armstrong. 1988. Temporality in spatial databases. In Proceedings of GIS/LIS’88: Accessing the World, American Society for Photogrammetry and Remote Sensing, Falls Church, VA, 880--889.
[9]
L. Becker, A. Voigtmann, and K. H. Hinrichs. 1996. Temporal support for geo-data in object-oriented databases. In Database and Expert Systems Applications, R. R. Wagner and H. Thoma (Eds.). Springer Verlag, Berlin, 79--93.
[10]
Y. Bédard, C. Caron, Z. Maamar, B. Moulin, and D. Valliere. 1996. Adapting data models for the design of spatio-temporal databases. Comput. Environ. Urban Syst. 20, 1, 19--41.
[11]
R. R. Berman and M. Stonebraker. 1977. GEO-OUEL: A system for the manipulation and display of geographic data. ACM SIGGRAPH Comput. Graph. 11, 2, 186--191.
[12]
L. Bian. 2000. Object-oriented representation for modelling mobile objects in an aquatic environment. Int. J. Geogr. Info. Sci. 14, 7, 603--623.
[13]
A. Bolour, T. L. Anderson, L. J. Dekeyser, and H. K. Wong. 1982. The role of time in information processing: A survey. ACM SIGART Bull. 80, 28--46.
[14]
G. Booch, J. Rumbaugh, and I. Jacobson. 1999. The Unified Modeling Language User Guide. Addison-Wesley, Redwood City, CA.
[15]
J. Bothwell and M. Yuan. 2010. Apply concepts of fluid kinematics to represent continuous space--time fields in temporal GIS. Ann. GIS 16, 1, 27--41.
[16]
J. Bothwell and M. Yuan. 2011. A kinematics-based GIS methodology to represent and analyze spatiotemporal patterns of precipitation change in IPCC A2 scenario. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, New York, NY, 152--161.
[17]
F. P. Brooks. 1956. The Analytic Design of Automatic Data Processing Systems. Doctoral Dissertation, Harvard University.
[18]
D. G. Brown and Y. Xie. 2006. Spatial agent-based modelling. Int. J. Geogr. Info. Sci. 20, 9, 941--943.
[19]
W. E. Bull. 1960. Time, Tense, and the Verb: A Study in Theoretical and Applied Linguistics, with Particular Attention to Spanish. University of California Press, Berkeley, CA.
[20]
M. Bunge. 1966. Causality. Dover Publications, Mineola, NY.
[21]
E. Camossi, M. Bertolotto, and E. Bertino. 2006. A multigranular object-oriented framework supporting spatio-temporal granularity conversions. Int. J. Geogr. Info. Sci. 20, 5, 511--534.
[22]
E. Camossi, M. Bertolotto, E. Bertino, and G. Guerrini. 2003. A multigranular spatiotemporal data model. In Proceedings of the 11th ACM International Symposium on Advances in Geographic Information Systems (GIS'03). ACM, New York, NY, 94--101.
[23]
R. Campos, G. Dias, A. M. J. Jorge, and A. Jatowt. 2015. Survey of temporal information retrieval and related applications. ACM Comput. Surveys 47, 2, 15-1-15-41.
[24]
C. Caron, Y. Bédard, and P. Gagnon. 1993. MODUL-R: Un formalisme individuel adapté pour les SIRS. Revue de Géomatique 3, 3, 283--306.
[25]
S.-K. Chang and K.-s. Fu (Eds.). 1980. Pictorial lnformation Systems. Springer Verlag, Berlin.
[26]
Charles Babbage Institute. 1959. Conference on data systems languages records, 1959-1990, (CBI 11)'. In Proceedings of the Conference on Data Systems Languages (CODASYL’59). University of Minnesota Libraries, Minneapolis, MN.
[27]
P. P. Chen. 1976. The entity-relationship model—Toward a unified view of data. ACM Trans. Database Syst. 1, 1, 9--36.
[28]
J. Choi, J. C. Seong, B. Kim, and E. L. Usery. 2008. Innovations in individual feature history management—The significance of feature-based temporal model. GeoInformatica 12, 1, 1--20.
[29]
N. Chrisman. 1988. The risks of software innovation: A case study of the harvard lab. Amer. Cartogr. 15, 3, 291--300.
[30]
C. Claramunt and B. Jiang. 2000. A representation of relationships in temporal spaces. In Innovations in GIS 7: GIS and Geocomputation, P. Adkinson and D. Martin (Eds.). Taylor 8 Francis, London, 41--53.
[31]
C. Claramunt and K. Stewart. 2015. Special issue on spatio-temporal theories and models for environmental, urban and social sciences: where do we stand? Spatial Cogn. Comput. 15, 2, 61--67.
[32]
C. Claramunt and M. Thériault. 1995. Managing time in GIS: An event-oriented approach. In Recent Advances in Temporal Databases: Proceedings of the International Workshop on Temporal Databases, J. Clifford and A. Tuzhilin (Eds.). Springer Verlag, London, 23--42.
[33]
C. Claramunt and M. Thériault. 1996. Toward semantics for modelling spatio-temporal processes within GIS. In Proceedings of the 7th International Symposium on Spatial Data Handling, M.-J. Kraak and M. Molenaar (Eds.). Taylor 8 Francis, London, 47--64.
[34]
C. Claramunt, C. Parent, and M. Thériault. 1997. Design patterns for spatio-temporal processes. In Searching for Semantics: Data Mining and Reverse Engineering —Proceedings of the 7th IFIP 2.6 Working Conference on Database Semantics (DS’97), S. Spaccapietra and F. J. Maryanski (Eds.). Chapman 8 Hall, London, 415--428.
[35]
C. Claramunt, C. Parent, S. Spaccapietra, and M. Thériault. 1999. Database modelling for environmental and land use changes. In Geographical Information and Planning, J. Stillwell, S. Geertman, and S. Openshaw (Eds.). Springer, Berlin, 181--202.
[36]
C. Claramunt, M. Thériault, and C. Parent. 1998. A qualitative representation of evolving spatial entities in two-dimensional topological spaces. In Innovations in GIS 5: Selected Papers from the Fifth National Conference on GIS Research UK, S. Carver (Ed.). Taylor 8 Francis, London, 121--131.
[37]
J. Clifford and D. S. Warren. 1983. Formal semantics for time in databases. ACM Trans. Database Syst. 8, 2, 214--254.
[38]
E. F. Codd. 1970. A relational model of data for large shared data banks. Commun. ACM 13, 6, 377--387.
[39]
D. Comer. 1979. “Ubiquitous B-Tree”. ACM Comput. Surveys 11, 2, 121--137.
[40]
J. A. Cotelo Lema, L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider. 2003. Algorithms for moving objects databases. Comput. J. 46, 6, 680--712.
[41]
H. Couclelis. 1992. People manipulate objects (but cultivate fields): Beyond the raster-vector debate in GIS. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, A. U. Frank, I. Campari, and U. Formentini (Eds.). Springer Verlag, Berlin, 65--77.
[42]
U. Dayal, F. Manola, A. Buchmann, U. Chakravarthy, D. Goldhirsch, S. Heiler, J. Orenstein, and A. Rosenthal. 1987. Simplifying complex objects: The PROBE approach to modelling and querying them. In Datenbanksysteme in Büro, Technik und Wissenschaft, H. J. Schek and G. Schlageter (Eds.). Springer, Berlin, 17--37.
[43]
G. Del Mondo, M. A. Rodríguez, C. Claramunt, L. Bravo, and R. Thibaud. 2013. Modeling consistency of spatio-temporal graphs. Data Knowl. Eng. 84, 59--80.
[44]
G. Del Mondo, J. G. Stell, C. Claramunt, and R. Thibaud. 2010. A graph model for spatio-temporal evolution. J. Univ. Comput. Sci. 16, 11, 1452--1477.
[45]
M. Delafontaine, T. Neutens, and N. van de Weghe. 2011. Modelling potential movement in constrained travel environments using rough space-time prisms. Int. J. Geogr. Info. Sci. 25, 9, 1389--1411.
[46]
U. Demšar, K. Buchin, F. Cagnacci, K. Safi, B. Speckmann, N. Van de Weghe, D. Weiskopf, and R. Weibel. 2015. Analysis and visualisation of movement: An interdisciplinary review. Move. Ecol. 3, 1, 5.
[47]
S. Dodge, R. Weibel, S. C. Ahearn, M. Buchin, and J. A. Miller. 2016. Analysis of movement data. Int. J. Geogr. Info. Sci. 30, 5, 825--834.
[48]
R. M. Edsall and D. J. Peuquet. 1997. A graphical user interface for the integration of time into GIS. In Proceedings of the 1997 American Congress of Surveying and Mapping Annual Convention and Exhibition. 182--189.
[49]
B. A. El-Geresy, A. I. Abdelmoty, and C. B. Jones. 2002. Spatio-temporal geographic information systems: A causal perspective. In Advances in Databases and Information Systems, Y. Manolopoulos and P. Návrat (Eds.). Springer Verlag, Berlin, 191--203.
[50]
H. G. Elmongui, M. F. Mokbel, and W. G. Aref. 2013. Continuous aggregate nearest neighbor queries. GeoInformatica 17, 1, 63--95.
[51]
O. Enriquez, A. Guzmán, and G. Narváez. 2014. Análisis del comportamiento de la precipitación en el municipio de buenaventura (valle del cauca, colombia) en condiciones de desarrollo de los fenómenos El Niño y La Niña. Cuadernos de Geografía: Revista Colombiana de Geografía 23, 1, 165--178.
[52]
M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgiannis. 1999. Spatio-temporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica 3, 3, 269--296.
[53]
Z. Fang, Q. Li, X. Zhang, and S.-L. Shaw. 2012. A GIS data model for landmark-based pedestrian navigation. Int. J. Geogr. Info. Sci. 26, 5, 817--838.
[54]
G. Faria, C. B. Medeiros, and M. A. Nascimento. 1998. An Extensible Framework for Spatio-Temporal Database Applications. Time Center, Aalborg.
[55]
K. R. Ferreira, G. Câmara, and A. M. Vieira Monteiro. 2014. An algebra for spatiotemporal data: From observations to events. Trans. GIS 18, 2, 253--269.
[56]
L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider. 2000. A data model and data structures for moving objects databases. ACM SIGMOD Rec. 29, 2, 319--330.
[57]
A. U. Frank. 1982. MAPQUERY: Data base query language for retrieval of geometric data and their graphical representation. ACM SIGGRAPH Comput. Graph. 16, 3, 199--207.
[58]
S. K. Gadia. 1988. A homogeneous relational model and query languages for temporal databases. ACM Trans. Database Syst. 13, 4, 418--448.
[59]
S. K. Gadia and J. H. Vaishnav. 1985. A query language for a homogeneous temporal database. In Proceedings of the 4th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. ACM, New York, NY, 51--56.
[60]
S. K. Gadia and C.-S. Yeung. 1988. A generalized model for a relational temporal database. ACM SIGMOD Rec. 17, 3, 251--259.
[61]
A. P. Galton. 2003. “Desiderata for a spatio-temporal geo-ontology”. In Proceedings of Spatial Information Theory. Foundations of Geographic Information Science, International Conference (COSIT’03), W. Kuhn, M. F. Worboys, and S. Timpf (Eds.). Springer Verlag, Berlin, 1--12.
[62]
A. P. Galton. 2004. Fields and objects in space, time, and space-time. Spatial Cogn. Comput. 4, 1, 39--68.
[63]
A. P. Galton and M. F. Worboys. 2005. Processes and events in dynamic geo-networks. In GeoSpatial Semantics, A. Rodríguez, I. F. Cruz, M. J. Egenhofer, and S. Levashkin (Eds.). Springer Verlag, Berlin, 45--59.
[64]
M. F. Goodchild. 2013. Prospects for a space--time GIS. Ann. Assoc. Amer. Geogr. 103, 5, 1072--1077.
[65]
M. F. Goodchild, M. Yuan, and T. J. Cova. 2007. Towards a general theory of geographic representation in GIS. Int. J. Geogr. Info. Sci. 21, 3, 239--260.
[66]
P. Grenon and B. Smith. 2004. SNAP and SPAN: Towards dynamic spatial ontology. Spatial Cogn. Comput. 4, 1, 69--104.
[67]
O. Günther and A. P. Buchmann. 1990. Research issues in spatial databases. ACM SIGMOD Rec. 19, 4, 61--68.
[68]
R. H. Güting. 1994. An introduction to spatial database systems. VLDB J.—Int. J. Very Large Data Bases 3, 4, 357--399.
[69]
R. H. Güting and M. Schneider. 2005. Moving Objects Databases. Morgan Kaufmann Publishers, San Francisco-CA.
[70]
R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. 2000. A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25, 1, 1--42.
[71]
A. Guttman. 1984. R-trees: A dynamic index structure for spatial searching. ACM SIGMOD Rec. 14, 2, 47--57.
[72]
T. Hadzilacos and N. Tryfona. 1997. An extended entity-relationship model for geographic applications. ACM SIGMOD Rec. 26, 3, 24--29.
[73]
T. Hägerstrand. 1967. Innovation Diffusion as a Spatial Process. University of Chicago Press, Chicago, IL.
[74]
T. Hägerstrand. 1970. What about people in regional science? Papers Region. Sci. 24, 1, 7--24.
[75]
H. Hajari and F. Hakimpour. 2014. A spatial data model for moving object databases. Int. J. Data. Manage. Syst. 6, 1, 1--20.
[76]
P. J. Halls, F. A. Polack, and S. E. O'Kee. 1999. A new approach to the spatial analysis of temporal change using todes and neural nets. Cybergeo: Eur. J. Geogr. 139.
[77]
W. R. Hamilton. 1837. Theory of conjugate functions, or algebraic couples; with a preliminary and elementary essay on algebra as the science of pure time. Trans. Roy. Irish Acad. 17, 293--422.
[78]
T. Hamre. 1994. An object-oriented conceptual model for measured and derived data varying in 3d space and time. In Proceedings of the 6th International Symposium on Spatial Data Handling, T. C. Waugh and R. G. Healey (Eds.). Taylor 8 Francis, London, 868--881.
[79]
N. W. Hazelton. 1991. Integrating Time, Dynamic Modeling, and Geographical Information Systems Development of Four-Dimensional GIS. Ph.D Thesis, The University of Melbourne.
[80]
N. W. Hazelton, F. Leahy, and I. P. Williamson. 1992. Integrating dynamic modeling and geographic information systems. URISA J. 4, 2, 47--58.
[81]
K. Hornsby and M. J. Egenhofer. 1997. Qualitative representation of change. In Spatial Information Theory a Theoretical Basis for GIS, S. C. Hirtle and A. U. Frank (Eds.). Springer Verlag, Berlin, 15--33.
[82]
K. Hornsby and M. J. Egenhofer. 2000. Identity-based change: A foundation for spatio-temporal knowledge representation. Int. J. Geogr. Info. Sci. 14, 3, 207--224.
[83]
J. L. Huere Peña and M. Y. Santos. 2011. Representing, storing and mining moving objects data. In Proceedings of the World Congress on Engineering 2011, S. I. Ao, L. Gelman, D. W. Hukings, A. Hunter, and A. M. Korsunsky (Eds.). Newswood Limited, Kwun Tong, 1823--1828.
[84]
G. J. Hunter and I. P. Williamson. 1990. The development of a historical digital cadastral database. Int. J. Geogr. Info. Syst. 4, 2, 169--179.
[85]
S. Ilarri, E. Mena, and A. Illarramendi. 2010. Location-dependent query processing: Where we are and where we are heading. ACM Comput. Surveys 42, 3, 12:1--12:73.
[86]
I. O. ISO. 2002. ISO 19108:2002--Geographic information--Temporal schema. International Organization for Standardization (ISO), Geneva.
[87]
G. M. Jacquez, D. A. Greiling, and A. M. Kaufmann. 2005. Design and implementation of a space-time intelligence system for disease surveillance. J. Geogr. Syst. 7, 1, 7--23.
[88]
S. Khaddaj, A. Adamu, and M. Morad. 2005. Construction of an integrated object oriented system for temporal GIS. Amer. J. Appl. Sci. 2, 12, 1584--1594.
[89]
R. Kowalski and M. Sergot. 1986. A logic-based calculus of events. New Gen. Comput. 4, 1, 67--95.
[90]
B. Kuijpers, R. Grimson, and W. Othman. 2011. An analytic solution to the alibi query in the space-time prisms model for moving object data. Int. J. Geogr. Info. Sci. 25, 2, 293--322.
[91]
B. Langefors. 1966. Theoretical Analysis of Information Systems. Studentlitteratur, Lund.
[92]
B. Langefors and B. Sundgren. 1975. Information Systems Architecture. Petrocelli/Charter, New York, NY.
[93]
G. Langran. 1988. Temporal GIS design tradeoffs. In Proceedings of GIS/LIS’88: Accessing the World. Urban and Regional Information Systems Association, Falls Church, VA, 890--899.
[94]
G. Langran. 1992. Time in Geographic Information Systems. Taylor 8 Francis, London.
[95]
G. Langran and N. R. Chrisman. 1988. A framework for temporal geographic information. Cartogr. Int J. Geogr. Info. Geovisual. 25, 3, 1--14.
[96]
P. Laube. 2014. Computational Movement Analysis. Springer Verlag, Berlin.
[97]
Y. Liu, M. F. Goodchild, Q. H. Guo, Y. Tian, and L. Wu. 2008. Towards a general field model and its order in GIS. Int. J. Geogr. Info. Sci. 22, 6, 623--643.
[98]
A. Lohfink, D. McPhee, and M. Ware. 2010. A UML-based representation of spatio-temporal evolution in road network data. Trans. GIS 14, 6, 853--872.
[99]
J. A. Long and T. A. Nelson. 2013. A review of quantitative methods for movement data. Int. J. Geogr. Info. Sci. 27, 2, 292--318.
[100]
A. Maldonado Ibañez and A. Vázquez Hoehne. 2010. Diseño de primitivas geométricas espacio-temporales para describir fenómenos dinámicos. GeoFocus 10, 1, 232--251.
[101]
R. P. McArthur. 1976. Tense Logic. D. Reidel Publishing, Dordrecht.
[102]
J. McIntosh and M. Yuan. 2005a. A framework to enhance semantic flexibility for analysis of distributed phenomena. Int. J. Geogr. Info. Sci. 19, 10, 999--1018.
[103]
J. McIntosh and M. Yuan. 2005b. Assessing similarity of geographic processes and events. Trans. GIS 9, 2, 223--245.
[104]
G. Z. Molina and A. J. Albarran. 2013. Análisis multitemporal y de la estructura horizontal de la cobertura de la tierra: Parque nacional yacambú, estado lara, Venezuela. Cuadernos de Geografía: Revista Colombiana de Geografía. 22, 1, 25--40.
[105]
T. Murata. 1989. Petri nets: Properties, analysis and applications. Proc. IEEE. 77, 4, 541--580.
[106]
V. Nixon and K. Stewart Hornsby. 2010. Using geolifespans to model dynamic geographic domains. Int. J. Geogr. Info. Sci. 24, 9, 1289--1308.
[107]
V. Noyon, C. Claramunt, and T. Devogele. 2007. A relative representation of trajectories in geogaphical spaces. GeoInformatica 11, 4, 479--496.
[108]
V. Noyon, T. Devogele, and C. Claramunt. 2005. A formal model for representing point trajectories in two-dimensional spaces. In Perspectives in Conceptual Modeling, J. Akoka, S. W. Liddle, I.-Y. Song, M. Bertolotto, I. Comyn-Wattiau, W.-J. van den Heuvel, M. Kolp, J. Trujillo, C. Kop, and H. C. Mayr (Eds.). Springer Verlag, Berlin, 208--217.
[109]
T. W. Olle. 1978. The CODASYL Approach to Data Base Management. John Wiley 8 Sons, New York, NY.
[110]
B. C. Ooi, R. Sacks-Davis, and K. J. McDonell. 1989. Extending a DBMS for geographic applications. In Proceedings of the 5th International Conference on Data Engineering. IEEE Computer Society, Los Alamitos, CA, 590--597.
[111]
D. Orellana and M. Wachowicz. 2011. Exploring patterns of movement suspension in pedestrian mobility. Geogr. Anal. 43, 3, 241--260.
[112]
D. Orellana, A. K. Bregt, A. Ligtenberg, and M. Wachowicz. 2012. Exploring visitor movement patterns in natural recreational areas. Tour. Manage. 33, 3, 672--682.
[113]
J. A. Orenstein. 1986. Spatial query processing in an object-oriented database system. ACM SIGMOD Rec. 15, 2, 326--336.
[114]
J. A. Orenstein and F. A. Manola. 1988. PROBE spatial data modeling and query processing in an image database application. IEEE Trans. Softw. Eng. 14, 5, 611--629.
[115]
Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. 1995. Object exchange across heterogeneous information sources. In Proceedings of the 11th International Conference on Data Engineering (ICDE’95), P. S. Yu and A. L. Chen (Eds.). IEEE Computer Society, Los Alamitos, CA, 251--260.
[116]
C. Parent, S. Spaccapietra, and E. Zimányi. 1997. Conceptual modeling for federated GIS over the web. In Proceedings of the International Symposium on Information Systems and Technologies for Network Society, Y. Kambayashi, Y. Masunaga, M. Takizawa, and Y. Anzai (Eds.). World Scientific, Singapore, 173--182.
[117]
C. Parent, S. Spaccapietra, and E. Zimányi. 1999. Spatio-temporal conceptual models: Data structures + space + time. In Proceedings of the 7th ACM International Symposium on Advances in Geographic Information Systems (ACMGIS’99). ACM, New York, NY, 26--33.
[118]
N. Pelekis, B. Theodoulidis, I. Kopanakis, and Y. Theodoridis. 2004. Literature review of spatio-temporal database models. Knowl. Eng. Rev. 19, 3, 235--274.
[119]
T. K. Peucker and N. Chrisman. 1975. Cartographic data structures. Amer. Cartogr. 2, 1, 55--69.
[120]
D. J. Peuquet. 1984. A conceptual framework and comparison of spatial data models. Cartogr.: Int J. Geogr. Info. Geovisual. 21, 4, 66--113.
[121]
D. J. Peuquet. 1988. Representations of geographic space: Toward a conceptual synthesis. Ann. Assoc. Amer. Geogr. 78, 3, 375--394.
[122]
D. J. Peuquet. 1994. It's about time: A conceptual framework for the representation of temporal dynamics in geographic information systems. Ann. Assoc. Amer. Geogr. 84, 3, 441--461.
[123]
D. J. Peuquet. 2001. Making space for time: Issues in space-time data representation. GeoInformatica 5, 1, 11--32.
[124]
D. J. Peuquet. 2002. Representations of Space and Time. The Guilford Press, London-UK.
[125]
D. J. Peuquet and N. Duan. 1995. An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. Int. J. Geogr. Info. Syst. 9, 1, 7--24.
[126]
D. J. Peuquet and E. A. Wentz. 1994. An approach for time-based analysis of spatiotemporal data. In Proceedings of the 6th International Symposium on Spatial Data Handling, T. C. Waugh and R. G. Healey (Eds.). Taylor 8 Francis, London, 489--504.
[127]
C. Plumejeaud, H. Mathian, J. Gensel, and C. Grasland. 2011. Spatio-temporal analysis of territorial changes from a multi-scale perspective. Int. J. Geogr. Info. Sci. 25, 10, 1597--1612.
[128]
S. D. Pragera and J. J. Barber. 2012. Modeling unobserved true position using multiple sources and information semantics. Int. J. Geogr. Info. Sci. 26, 1, 15--37.
[129]
R. Price, N. Tryfona, and C. S. Jensen. 2000. Extended spatiotemporal UML: Motivations, requirements and constructs. J. Database Manage. 11, 4, 14--27.
[130]
R. Price, N. Tryfona, and C. S. Jensen. 2002. Extending UML for space- and time-dependent applications. In Advanced Topics in Database Research, K. Siau (Ed.). IGI Global, Hershey, PA, 342--366.
[131]
A. N. Prior. 1967. Past, Present and Future. The Clarendon Press, Oxford.
[132]
E. Pultar, T. J. Cova, M. Yuan, and M. F. Goodchild. 2010. EDGIS: A dynamic GIS based on space time points. Int. J. Geogr. Info. Sci. 24, 3, 329--346.
[133]
A. Renolen. 1996. History graphs: Conceptual modeling of spatio-temporal data. In GIS Frontiers in Business and Science Conference, M. Konecny (Ed.). International Cartographic Association, Bern.
[134]
A. Renolen. 1997. Modelling Spatiotemporal Information: The Spatiotemporal Object Model. Norwegian University of Sciences and Technology, Trondheim.
[135]
A. Renolen. 2000. Modelling the real world: Conceptual modelling in spatiotemporal information system design. Trans. GIS 4, 1, 23--42.
[136]
J. C. Robertson. 1967. The symap programme for computer mapping. Cartogr. J. 4, 2, 108--113.
[137]
E. Rojas Vega and Z. Kemp. 1995. An object-oriented data model for spatio-temporal data. In Proceedings of the 9th Annual Symposium on Geographic Information Systems in Natural Resources Management (GIS’95), P. O'Reilly (Ed.). GIS World Inc., Fort Collins, CO, 399--406.
[138]
C. Rolland, F. Bodart, and M. Léonard (Eds.). 1987. Temporal Aspects in Information Systems: Proceedings. Elsevier, North Holland.
[139]
J. R. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and W. Premerlani. 1991. Object-Oriented Modeling and Design. Prentice Hall, Upper Saddle River, NJ.
[140]
M. Schilcher. 1985. Interactive graphic data processing in cartography. Comput. Graph. 9, 1, 57--66.
[141]
R. Sengupta and C. Yan. 2004. A hybrid spatio-temporal data model and structure (HST-DMS) for efficient storage and retrieval of land use information. Trans. GIS 8, 3, 351--366.
[142]
Y. Shoham. 1993. Agent-oriented programming. Artific. Intell. 60, 1, 51--92.
[143]
W. Siabato, C. Claramunt, and M. Á. Bernabé-Poveda. 2013. An interactive bibliography on temporal GIS. J. Spatial Info. Sci. 7, 1, 99--101.
[144]
W. Siabato, C. Claramunt, M. Á. Manso-Callejo, and M. Á. Bernabé-Poveda. 2014. TimeBliography: A dynamic and online bibliography on temporal GIS. Trans. GIS 18, 6, 799--816.
[145]
D. F. Sinton. 1978. The inherent structure of information as a constraint to analysis: Mapped thematic data as a case study. In Proceedings of the 1st International Advanced Study Symposium on Topological Data Structures for Geographic Information Systems, G. Dutton (Ed.). Harvard University Laboratory for Computer Graphics and Spatial Analysis, Cambridge, MA, 1--17.
[146]
R. T. Snodgrass. 1987. The temporal query language TQuel. ACM Trans. Database Syst. 12, 2, 247--298.
[147]
R. T. Snodgrass and I. Ahn. 1985. A taxonomy of time databases. ACM SIGMOD Rec. 14, 4, 236--246.
[148]
R. T. Snodgrass and l. Ahn. 1986. Temporal databases. Computer 19, 9, 35--42.
[149]
M. Sriti, R. Thibaud, and C. Claramunt. 2005. A fuzzy identity-based temporal GIS for the analysis of geomorphometry changes. In Journal on Data Semantics III, S. Spaccapietra and E. Zimányi (Eds.). Springer Verlag, Berlin, 81--99.
[150]
E. Stefanakis. 2002. Representation of map objects with semi-structured data models. In Advances in Spatial Data Handling, D. E. Richardson and P. v. Oosterom (Eds.). Springer Verlag, Berlin, 547--562.
[151]
E. Stefanakis. 2003. Modelling the history of semi-structured geographical entities. Int. J. Geogr. Info. Sci. 17, 6, 517--546.
[152]
K. Stewart Hornsby and S. Cole. 2007. Modeling moving geospatial objects from an event-based perspective. Trans. GIS 11, 4, 555--573.
[153]
M. Stonebraker and L. A. Rowe. 1986. The design of POSTGRES. ACM SIGMOD Rec. 15, 2, 340--355.
[154]
M. Stonebraker, W. B. Rubenstein, and A. Guttman. 1983. Application of abstract data types and abstract indices to CAD data bases. In Proceedings of the Engineering Design Application Conference. IEEE Computer Society, Los Alamitos, CA, 107--113.
[155]
R. F. Tomlinson. 1967. An Introduction to the Geographic Information System of the Canada Land Inventory. Department of Forestry and Rural Development, Ottawa, ON.
[156]
N. Tryfona. 1998. Modeling phenomena in spatiotemporal databases: Desiderata and solutions. In Database and Expert Systems Applications, G. Quirchmayr, E. Schweighofer, and T. J. Bench-Capon (Eds.). Springer Verlag, Berlin, 155--165.
[157]
N. Tryfona and T. Hadzilacos. 1998. Logical data modeling of spatiotemporal applications: Definitions and a model. In Proceedings of the International Database Engineering and Applications Symposium (IDEAS’98), B. Eaglestone, B. C. Desai, and J. Shao (Eds.). IEEE Computer Society, Los Alamitos, CA, 14--23.
[158]
N. Tryfona and C. S. Jensen. 1999. Conceptual data modeling for spatiotemporal applications. GeoInformatica 3, 3, 245--268.
[159]
N. Tryfona and C. S. Jensen. 2000. Using abstractions for spatio-temporal conceptual modelling. In Proceedings of the ACM Symposium on Applied Computing. ACM, New York, NY, 313--322.
[160]
N. Tryfona, D. Pfoser, and T. Hadzilacos. 1997. Modeling behavior of geographic objects: An experience with the object modeling technique. In Advanced Information Systems Engineering, A. Olivé and J. A. Pastor (Eds.). Springer Verlag, Berlin, 347--359.
[161]
University consortium for geographic information science (UCGIS). (2004/02/02). 2002. Research Agenda. Retrieved from http://www.ucgis.org/priorities/research/2002researchagenda.htm.
[162]
K. Venkateswara Rao, A. Govardhan, and K. V. Chalapati Rao. 2011. An object-oriented modeling and implementation of spatio-temporal knowledge discovery system. Int. J. Comput. Sci. Info. Technol. 3, 2, 61--76.
[163]
A. Voigtmann, L. Becker, and K. H. Hinrichs. 1996. Temporal Extensions for an Object-Oriented Geo-Data-Model. Institut für Informatik, Münster.
[164]
M. Wachowicz. 1999. Object-Oriented Design for Temporal GIS. Taylor 8 Francis, London.
[165]
M. Wachowicz and R. G. Healey. 1994. Towards temporality in GIS. In Innovations in GIS 1: Selected Papers from the First National Conference on GIS Research UK, M. F. Worboys (Ed.). Taylor 8 Francis, Bristol, PA, 105--115.
[166]
M. Wachowicz, R. Ong, C. Renso, and M. Nanni. 2011. Finding moving flock patterns among pedestrians through collective coherence. Int. J. Geogr. Info. Sci. 25, 11, 1809--1864.
[167]
E. A. Wentz, D. J. Peuquet, and S. Anderson. 2010. An ensemble approach to space--time interpolation. Int. J. Geogr. Info. Sci. 24, 9, 1309--1325.
[168]
G. Wiederhold, J. F. Fries, and S. Weyl. 1975. Structured organization of clinical database. In Proceedings of the National Computer Conference. AFIPS Press, Montvale, NJ, 479--485.
[169]
O. Wolfson and E. Mena. 2005. Applications of moving objects databases. In Spatial Databases: Technologies, Techniques and Trends, Y. Manolopoulos, A. Papadopoulos, and M. G. Vassilakopoulos (Eds.). IGI Global, Hershey, PA, 186--203.
[170]
O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. 1998. Moving objects databases: Issues and solutions. In Proceedings of the 10th International Conference on Scientific and Statistical Database Management. IEEE Computer Society, Los Alamitos, CA, 111--122.
[171]
M. F. Worboys. 1992a. A generic model for planar geographical objects. Int. J. Geogr. Info. Syst. 6, 5, 353--372.
[172]
M. F. Worboys. 1992b. A model for spatio-temporal information. In Proceedings of the 5th International Symposium on Spatial Data Handling, P. J. Bresnahan, E. Corwin, and D. J. Cowen (Eds.). University of South California, Los Angeles, CA, 602--611.
[173]
M. F. Worboys. 1994a. A unified model for spatial and temporal information. Comput. J. 37, 1, 26--34.
[174]
M. F. Worboys. 1994b. Object-oriented approaches to geo-referenced information. Int. J. Geogr. Info. Syst. 8, 4, 385--399.
[175]
M. F. Worboys. 2005. Event-oriented approaches to geographic phenomena. Int. J. Geogr. Info. Sci. 19, 1, 1--28.
[176]
M. F. Worboys and M. Duckham. 2006. Monitoring qualitative spatiotemporal change for geosensor networks. Int. J. Geogr. Info. Sci. 20, 10, 1087--1108.
[177]
M. F. Worboys and K. Hornsby. 2004. From objects to events: GEM, the geospatial event model. In Geographic Information Science, M. J. Egenhofer, C. Freksa, and H. J. Miller (Eds.). Springer Verlag, Berlin, 327--344.
[178]
M. F. Worboys, H. M. Hearnshaw, and D. J. Maguire. 1990a. Object-oriented data and query modelling for geographical information systems. In Proceedings of the 4th International Symposium on Spatial Data Handling (SDH’90), K. Brassel and H. Kishimoto (Eds.). IGU Commission on Geographical Data Sensing and Processing, Ohio, 679--689.
[179]
M. F. Worboys, H. M. Hearnshaw, and D. J. Maguire. 1990b. Object-oriented data modelling for spatial databases. Int. J. Geogr. Info. Syst. 4, 4, 369--383.
[180]
X. Wu, W. Cui, Y. Huang, and X. Yang. 2008. Research on change-of-feature based spatio-temporal object relational model. In Proceedings of the 21st ISPRS Congress—Silk Road for Information from Imagery. International Society for Photogrammetry and Remote Sensing (ISPRS). Rockville, MD, 119--122.
[181]
J. Xu and R. H. Güting. 2013. A generic data model for moving objects. GeoInformatica 17, 1, 125--172.
[182]
Y. Yang and C. Claramunt. 2003. A process-oriented multi-representation of gradual changes. J. Geogr. Info. Decis. Anal. 7, 1, 1--13.
[183]
C. Yu and D. J. Peuquet. 2009. A geoagent-based framework for knowledge-oriented representation: Embracing social rules in GIS. Int. J. Geogr. Info. Sci. 23, 7, 923--960.
[184]
M. Yuan. 1994. Wildfire conceptual modeling for building GIS space-time models. In Proceedings of GIS/LIS’94, American Society for Photogrammetry and Remote Sensing. Bethesda, MD, 860--889.
[185]
M. Yuan. 1996. Temporal GIS and spatio-temporal modelling. In Proceedings of the 3rd International Conference on Integrating GIS and Environmental Modeling. University of California, Santa Barbara, CA, 21--26.
[186]
M. Yuan. 1997. Modeling semantical, temporal and spatial information in geographic information systems. In Geographic Information Research: Bridging the Atlantic, M. Craglia and H. Couclelis (Eds.). Taylor 8 Francis, London, 334--347.
[187]
M. Yuan. 1999. Use of a three-domain representation to enhance GIS support for complex spatiotemporal queries. Trans. GIS 3, 2, 137--159.
[188]
M. Yuan. 2001. Representing complex geographic phenomena in GIS. Cartogr. Geogr. Info. Sci. 28, 2, 83--96.
[189]
M. Yuan. 2008. Adding time into geographic information systems databases. In The Handbook of Geographic Information Science, J. Wilson and A. S. Fotheringham (Eds.). Blackwell Publishing Ltd, Oxford, 169--184.
[190]
M. Yuan and J. McIntosh. 2002. A typology of spatiotemporal information queries. In Mining Spatio-Temporal Information Systems, R. Ladner, K. Shaw, and M. Abdelguerfi (Eds.). Kluwer Academic Publishers, Dordrecht, 63--81.
[191]
M. Yuan and K. Stewart Hornsby. 2008. Computation and Visualization for Understanding Dynamics in Geographic Domains: A Research Agenda. CRC Press, Boca Raton, FL.
[192]
Y. Zheng and X. Zhou (Eds.). 2011. Computing with Spatial Trajectories. Springer, New York, NY.
[193]
D. Zheni, A. Frihida, H. B. Ghezala, and C. Claramunt. 2009. A semantic approach for the modeling of trajectories in space and time. In Advances in Conceptual Modeling—Challenging Perspectives, C. A. Heuser and G. Pernul (Eds.). Springer Verlag, Berlin, 347--356.
[194]
R. Zhu, E. Guilbert, and M. S. Wong. 2017. Object-oriented tracking of the dynamic behavior of urban heat islands. Int. J. Geogr. Info. Sci. 31, 2, 405--424.

Cited By

View all
  • (2024)Spatial clustering-based parametric change footprint pattern analysis in Landsat imagesInternational Journal of Environmental Science and Technology10.1007/s13762-023-05369-821:6(5777-5794)Online publication date: 19-Jan-2024
  • (2023)Measuring Traffic Congestion with Novel Metrics: A Case Study of Six U.S. Metropolitan AreasISPRS International Journal of Geo-Information10.3390/ijgi1203013012:3(130)Online publication date: 20-Mar-2023
  • (2023)Merging Spatio-Temporal Objects and Business Processes: Land Reform Process Case StudyApplied Sciences10.3390/app13221237213:22(12372)Online publication date: 15-Nov-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 51, Issue 2
March 2019
748 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3186333
  • Editor:
  • Sartaj Sahni
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 April 2018
Accepted: 01 September 2017
Revised: 01 July 2017
Received: 01 April 2017
Published in CSUR Volume 51, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Spatio-temporal models
  2. literature review
  3. spatio-temporal databases
  4. survey
  5. temporal GIS
  6. temporal models
  7. time geography

Qualifiers

  • Survey
  • Research
  • Refereed

Funding Sources

  • Technical University of Madrid (Universidad Politécnica de Madrid)
  • UPM Training and Mobility of Researchers Programme
  • Mercator Research Group
  • Naval Academy Research Institute (IRENav)

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)104
  • Downloads (Last 6 weeks)13
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Spatial clustering-based parametric change footprint pattern analysis in Landsat imagesInternational Journal of Environmental Science and Technology10.1007/s13762-023-05369-821:6(5777-5794)Online publication date: 19-Jan-2024
  • (2023)Measuring Traffic Congestion with Novel Metrics: A Case Study of Six U.S. Metropolitan AreasISPRS International Journal of Geo-Information10.3390/ijgi1203013012:3(130)Online publication date: 20-Mar-2023
  • (2023)Merging Spatio-Temporal Objects and Business Processes: Land Reform Process Case StudyApplied Sciences10.3390/app13221237213:22(12372)Online publication date: 15-Nov-2023
  • (2023)High Quality and Resilient Historical Vector DataProceedings of the 7th ACM SIGSPATIAL International Workshop on Geospatial Humanities10.1145/3615887.3627760(52-55)Online publication date: 13-Nov-2023
  • (2023)Analysis and implementation of dynamic evolution of paleoclimate dynamics simulation based on temporal GISFourth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2022)10.1117/12.2668865(135)Online publication date: 23-Feb-2023
  • (2022)GisGCN: A Visual Graph-Based Framework to Match Geographical Areas through TimeISPRS International Journal of Geo-Information10.3390/ijgi1102009711:2(97)Online publication date: 29-Jan-2022
  • (2022)Temporal GIS models for cadastral data management: the knowns, unknowns and futureSurvey Review10.1080/00396265.2022.204910455:390(233-246)Online publication date: 11-Mar-2022
  • (2022)Semantic Adaptive Enrichment of Cartography for Intangible Cultural Heritage and Citizen JournalismAdvances in Information and Communication10.1007/978-3-030-98012-2_14(173-185)Online publication date: 8-Mar-2022
  • (2021)Leveraging Spatio-Temporal Graphs and Knowledge Graphs: Perspectives in the Field of Maritime TransportationISPRS International Journal of Geo-Information10.3390/ijgi1008054110:8(541)Online publication date: 12-Aug-2021
  • (2021)Pyramidal Framework: Guidance for the Next Generation of GIS Spatial-Temporal ModelsISPRS International Journal of Geo-Information10.3390/ijgi1003018810:3(188)Online publication date: 22-Mar-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media