Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3038912.3052644acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Linear Additive Markov Processes

Published: 03 April 2017 Publication History

Abstract

We introduce LAMP: the Linear Additive Markov Process. Transitions in LAMP may be influenced by states visited in the distant history of the process, but unlike higher-order Markov processes, LAMP retains an efficient parameterization. LAMP also allows the specific dependence on history to be learned efficiently from data.
We characterize some theoretical properties of LAMP, including its steady-state and mixing time. We then give an algorithm based on alternating minimization to learn LAMP models from data.
Finally, we perform a series of real-world experiments to show that LAMP is more powerful than first-order Markov processes, and even holds its own against deep sequential models (LSTMs) with a negligible increase in parameter complexity.

References

[1]
P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vigna. The query-flow graph: model and applications. In CIKM, pages 609--618, 2008.
[2]
J. Borges and M. Levene. Evaluating variable-length Markov chain models for analysis of user Web navigation sessions. TKDE, 19(4):441--452, 2007.
[3]
S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[4]
P. Buhlmann and A. Wyner. Variable length Markov chains. Annals of Statistics, pages 480--513, 1999.
[5]
H. Cao, D. Jiang, J. Pei, E. Chen, and H. Li. Towards context-aware search by learning a very large variable length hidden Markov model from search logs. In WWW, pages 191--200, 2009.
[6]
F. Chierichetti, R. Kumar, P. Raghavan, and T. Sarlós. Are Web users really Markovian? In WWW, pages 609--618, 2012.
[7]
N. Craswell and M. Szummer. Random walks on the click graph. In SIGIR, pages 239--246, 2007.
[8]
D. Dubashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, 2012.
[9]
J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l<sub>1</sub>-ball for learning in high dimensions. In ICML, pages 272--279, 2008.
[10]
R. Fagin, A. R. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld, M. Sudan, and A. Tomkins. Random walks with "back buttons". In STOC, pages 484--493, 2000.
[11]
C. Herrada. Music Recommendation and Discovery in the Long Tail. PhD thesis, Universitat Pompeu Fabra, 2009.
[12]
S. Hochreiter and J. Schmidhuber. Long short-term memory. In Neural Computation, pages 1735--1780, 1997.
[13]
S. Karlin and H. M. Taylor. A First Course in Stochastic Processes. Academic Press, 1975.
[14]
R. Kneser and H. Ney. Improved backing-off for $m$-gram language modeling. In ICASSP, pages 181--184, 1995.
[15]
R. Kumar, A. Tomkins, S. Vassilvitskii, and E. Vee. Inverting a steady-state. In WSDM, pages 359--368, 2015.
[16]
A. A. Markov. Extension of the limit theorems of probability theory to a sum of variables connected in a chain. Appendix B, Dynamic Probabilistic Systems: Markov Chains, 1, 1971.
[17]
S. Melnyk, O. Usatenko, and V. Yampol'skii. Memory functions of the additive Markov chains: applications to complex dynamic systems. Physica A: Statistical Mechanics and its Applications, 361(2):405--415, 2006.
[18]
J. Nocedal and S. Wright. Numerical Optimization. Springer Science & Business Media, 2006.
[19]
L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to the Web. Technical report, InfoLab, Stanford University, 1999.
[20]
R. Pemantle. Vertex-reinforced random walk. Probability Theory and Related Fields, 92(1):117--136, 1992.
[21]
P. L. T. Pirolli and J. E. Pitkow. Distributions of surfers' paths through the World Wide Web: Empirical characterizations. World Wide Web, 2(1--2):29--45, 1999.
[22]
S. I. Resnick. Adventures in Stochastic Processes. Birkhauser, 2002.
[23]
J. Rissanen. A universal data compression system. IEEE TOIT, 29(5):656--664, 1983.
[24]
R. R. Sarukkai. Link prediction and path analysis using Markov chains. Computer Networks, 33(1--6):377--386, 2000.
[25]
M. H. Schulz, D. Weese, T. Rausch, A. Döring, K. Reinert, and M. Vingron. Fast and adaptive variable order Markov chain construction. In Algorithms in Bioinformatics, pages 306--317. Springer, 2008.
[26]
R. Sen and M. Hansen. Predicting Web users' next access based on log data. Journal of Computational and Graphical Statistics, 12(1):143--155, 2003.
[27]
P. Singer, D. Helic, A. Hotho, and M. Strohmaier. HypTrails: A Bayesian approach for comparing hypotheses about human trails on the Web. In WWW, pages 1003--1013, 2015.
[28]
O. V. Usatenko. Random Finite-Valued Dynamical Systems: Additive Markov Chain Approach. Cambridge Scientific Publishers, 2009.
[29]
O. V. Usatenko, V. A. Yampol'skii, K. E. Kechedzhy, and S. S. Mel'nyk. Symbolic stochastic dynamical systems viewed as binary n-step Markov chains. Physical Review E, 68(6):061107, 2003.
[30]
A. Wald. On cumulative sums of random variables. Annals of Mathematical Statistics, 15(3):283--296, 1944.
[31]
R. West and J. Leskovec. Human wayfinding in information networks. In WWW, pages 619--628, 2012.
[32]
R. West, J. Pineau, and D. Precup. Wikispeedia: An online game for inferring semantic distances between concepts. In IJCAI, pages 1598--1603, 2009.
[33]
W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. CoRR, abs/1409.2329, 2014.
[34]
J.-D. Zhang and C.-Y. Chow. Spatiotemporal sequential influence modeling for location recommendations: A gravity-based approach. TIST, 7(1):11:1--11:25, 2015.
[35]
J.-D. Zhang, C.-Y. Chow, and Y. Li. Lore: Exploiting sequential influence for location recommendations. In SIGSPATIAL, pages 103--112, 2014.
[36]
I. Zukerman, D. W. Albrecht, and A. E. Nicholson. Predicting users' requests on the WWW. In UM, pages 275--284, 1999.

Cited By

View all
  • (2024)The entropy rate of Linear Additive Markov ProcessesPLOS ONE10.1371/journal.pone.029507419:4(e0295074)Online publication date: 5-Apr-2024
  • (2022)Mixture of Linear Additive Markov Processes: A Probabilistic Model for Joint Clustering and History-Dependent Transition Estimation2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)10.1109/WI-IAT55865.2022.00027(127-134)Online publication date: Nov-2022
  • (2022)Polya Decision Processes: A New History-Dependent Framework for Reinforcement Learning2022 IEEE 61st Conference on Decision and Control (CDC)10.1109/CDC51059.2022.9992504(4884-4891)Online publication date: 6-Dec-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '17: Proceedings of the 26th International Conference on World Wide Web
April 2017
1678 pages
ISBN:9781450349130

Sponsors

  • IW3C2: International World Wide Web Conference Committee

In-Cooperation

Publisher

International World Wide Web Conferences Steering Committee

Republic and Canton of Geneva, Switzerland

Publication History

Published: 03 April 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. browsing models
  2. markov chains
  3. probabilistic models
  4. random walks
  5. sequential models

Qualifiers

  • Research-article

Conference

WWW '17
Sponsor:
  • IW3C2

Acceptance Rates

WWW '17 Paper Acceptance Rate 164 of 966 submissions, 17%;
Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)3
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)The entropy rate of Linear Additive Markov ProcessesPLOS ONE10.1371/journal.pone.029507419:4(e0295074)Online publication date: 5-Apr-2024
  • (2022)Mixture of Linear Additive Markov Processes: A Probabilistic Model for Joint Clustering and History-Dependent Transition Estimation2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)10.1109/WI-IAT55865.2022.00027(127-134)Online publication date: Nov-2022
  • (2022)Polya Decision Processes: A New History-Dependent Framework for Reinforcement Learning2022 IEEE 61st Conference on Decision and Control (CDC)10.1109/CDC51059.2022.9992504(4884-4891)Online publication date: 6-Dec-2022
  • (2022)Hitting times for second-order random walksEuropean Journal of Applied Mathematics10.1017/S0956792522000213(1-25)Online publication date: 4-Jul-2022
  • (2021)Attentional Markov Model for Human Mobility PredictionIEEE Journal on Selected Areas in Communications10.1109/JSAC.2021.307849939:7(2213-2225)Online publication date: Jul-2021
  • (2019)CORRELATION FUNCTIONS FOR LINEAR ADDITIVE MARKOV CHAINS OF HIGHER ORDERSRADIOFIZIKA I ELEKTRONIKA10.15407/rej2019.01.04724:1(47-57)Online publication date: 5-Apr-2019
  • (2018)Applying temporal dependence to detect changes in streaming dataApplied Intelligence10.1007/s10489-018-1254-748:12(4805-4823)Online publication date: 1-Dec-2018
  • (2017)Retrospective Higher-Order Markov Processes for User TrailsProceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining10.1145/3097983.3098127(1185-1194)Online publication date: 13-Aug-2017

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media