Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

One-Step Sneak-Path Free Read Scheme for Resistive Crossbar Memory

Published: 03 February 2017 Publication History

Abstract

A one-step sneak-path free read scheme for resistive crossbar memory is proposed in this article. During read operation, it configures the crossbar array into a four-terminal resistance network, which is composed of the selected cell and three other resistors corresponding to unselected cells that contribute to the sneak-path. Two sensing voltages with equal potential are applied to three terminals of the network. One is for sensing the resistance of the selected cell; the other is for creating zero-voltage drop across one of the three resistors, which connects the sneak-path to the selected cell. This effectively suppresses the current injected by the sneak-path to the selected cell-sensing loop. This work also proposes a cost-effective data-encoding circuit that guarantees that at least half of the memory cells are in a high-resistance state, which further minimizes sneak-path current. The impact of key design parameters, such as sensing voltage, switch on-resistance, and the ratio of memory cell resistances in different states, as well as nonideal effects are investigated. Equations for estimating the maximum array size to share a single read circuit are derived. The effectiveness of the proposed design has been validated via circuit simulations. Impacts of the word-/bit-line resistance are also analyzed.

References

[1]
P. Khalili Amiri, Z. M. Zeng, P. Upadhyaya, G. Rowlands, H. Zhao, I. N. Krivorotov, J. P. Wang, H. W. Jiang, J. A. Katine, J. Langer, K. Galatsis, and K. L. Wang. 2011. Low write-energy magnetic tunnel junctions for high-speed spin-transfer-torque MRAM. IEEE Electron Device Letters 32, 1 (Jan. 2011), 57--59.
[2]
Y. Cassuto, S. Kvatinsky, and E. Yaakobi. 2013. Sneak-path constraints in memristor crossbar arrays. In Proceedings of the IEEE International Symposium on Information Theory. 156--160.
[3]
M.-F. Chang, S.-S. Sheu, K.-F. Lin, C.-W. Wu, C.-C. Kuo, P.-F. Chiu, Y.-S. Yang, Y.-S. Chen, H.-Y. Lee, C.-H. Lien, F. T. Chen, K.-L. Su, T.-K. Ku, M.-J. Kao, and M.-J. Tsai. 2013. A high-speed 7.2-ns read-write random access 4-mb embedded resistive RAM (ReRAM) macro using process-variation-tolerant current-mode read schemes. IEEE Journal of Solid-State Circuits 48, 3 (March 2013), 878--891.
[4]
Y. F. Chang, L. Ji, Y. C. Chen, F. Zhou, T. M. Tsai, K. C. Chang, M. C. Chen, T. C. Chang, B. Fowler, E. T. Yu, and J. C. Lee. 2014. High-density nano-pillar siox-based resistive switching memory using nano-sphere lithography to fabricate a one diode - one resistor (1d-1r) architecture. In Proceedings of the International Symposium on VLSI Technology, Systems and Application (VLSI-TSA’14). 1--2.
[5]
A. Chen. 2011. Accessibility of nano-crossbar arrays of resistive switching devices. In Proceedings of the 2011 11th IEEE Conference on Nanotechnology (IEEE-NANO’11). 1767--1771.
[6]
Y.-C. Chen, H. Li, and W. Zhang. 2012. A novel peripheral circuit for RRAM-based LUT. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’12). 1811--1814.
[7]
P.-F. Chiu, M.-F. Chang, C.-W. Wu, C.-H. Chuang, S.-S. Sheu, Y.-S. Chen, and M.-J. Tsai. 2012. Low store energy, low VDDmin, 8T2R nonvolatile latch and SRAM with vertical-stacked resistive memory (memristor) devices for low power mobile applications. IEEE Journal of Solid-State Circuits 47, 6 (June 2012), 1483--1496.
[8]
H. Chung, B. H. Jeong, B. Min, Y. Choi, B. H. Cho, J. Shin, J. Kim, J. Sunwoo, J. M. Park, Q. Wang, Y. J. Lee, S. Cha, D. Kwon, S. Kim, S. Kim, Y. Rho, M. H. Park, J. Kim, I. Song, S. Jun, J. Lee, K. Kim, K. W. Lim, W. R. Chung, C. Choi, H. Cho, I. Shin, W. Jun, S. Hwang, K. W. Song, K. Lee, S. W. Chang, W. Y. Cho, J. H. Yoo, and Y. H. Jun. 2011. A 58nm 1.8V 1Gb PRAM with 6.4MB/s program BW. In Proceedings of the 2011 IEEE International Solid-State Circuits Conference. 500--502.
[9]
B. F. Cockburn. 2003. The emergence of high-density semiconductor-compatible spintronic memory. In Proceedings of the International Conference on MEMS, NANO and Smart Systems. 321--326.
[10]
R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, J. Javanifard, K. Tedrow, T. Tsushima, Y. Shibahara, and G. Hush. 2014. A 16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm technology. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC’14). 338--339.
[11]
A. Gyanathan and Y.-C. Yeo. 2012. Phase-change random access memory with multilevel resistances implemented using a dual phase-change material stack. IEEE Transactions on Electron Devices 59, 11 (Nov. 2012), 2910--2916.
[12]
S. Kang, W. Y. Cho, B. H. Cho, K. J. Lee, C. S. Lee, H. R. Oh, B. G. Choi, Q. Wang, H. J. Kim, M. H. Park, Y. H. Ro, S. Kim, C. D. Ha, K. S. Kim, Y. R. Kim, D. E. Kim, C. K. Kwak, H. G. Byun, G. Jeong, H. Jeong, K. Kim, and Y. Shin. 2007. A 0.1-μm 1.8-V 256-Mb phase-change random access memory (PRAM) with 66-MHz synchronous burst-read operation. IEEE Journal of Solid-State Circuits 42, 1 (Jan. 2007), 210--218.
[13]
W. Kang, L. Zhang, J.-O. Klein, Y. Zhang, D. Ravelosona, and W. Zhao. 2015. Reconfigurable codesign of STT-MRAM under process variations in deeply scaled technology. IEEE Transactions on Electron Devices 62, 6 (June 2015), 1769--1777.
[14]
A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, K. Tanabe, T. Nakamura, Y. Sumimoto, N. Yamada, N. Nakai, S. Sakamoto, Y. Hayakawa, K. Tsuji, S. Yoneda, A. Himeno, K. Origasa, K. Shimakawa, T. Takagi, T. Mikawa, and K. Aono. 2012. An 8Mb multi-layered cross-point ReRAM macro with 443MB/s write throughput. In Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC’12). 432--434.
[15]
K. W. Kwon, S. H. Choday, Y. Kim, and K. Roy. 2014. AWARE (asymmetric write architecture with redundant blocks): A high write speed STT-MRAM cache architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22, 4 (April 2014), 712--720.
[16]
S.-K. Lee, S.-J. Park, H.-J. Park, and J.-Y. Sim. 2011. A 21 fJ/conversion-step 100 ks/s 10-bit ADC with a low-noise time-domain comparator for low-power sensor interface. IEEE Journal of Solid-State Circuits 46, 3 (March 2011), 651--659.
[17]
S. Leshner, K. Berezowski, Xiaoyin Yao, G. Chalivendra, S. Patel, and S. Vrudhula. 2010. A low power, high performance threshold logic-based standard cell multiplier in 65 nm CMOS. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’10). 210--215.
[18]
J. Liang, S. Yeh, S. S. Wong, and H.-S. P. Wong. 2013. Effect of wordline/bitline scaling on the performance, energy consumption, and reliability of cross-point memory array. Journal on Emerging Technologies in Computer Systems 9, 1, Article 9 (Feb. 2013), 14 pages.
[19]
C. Liu and H. Li. 2014. A weighted sensing scheme for ReRAM-based cross-point memory array. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’14). 65--70.
[20]
W. Liu, X. A. Tran, Z. Fang, H. D. Xiong, and H. Y. Yu. 2014. A self-compliant one-diode-one-resistor bipolar resistive random access memory for low power application. IEEE Electron Device Letters 35, 2 (Feb. 2014), 196--198.
[21]
B. Mohammad, D. Homouz, and H. Elgabra. 2013. Robust hybrid memristor-CMOS memory: Modeling and design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, 11 (Nov. 2013), 2069--2079.
[22]
F. Oboril, R. Bishnoi, M. Ebrahimi, and M. B. Tahoori. 2015. Evaluation of hybrid memory technologies using SOT-MRAM for on-chip cache hierarchy. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 34, 3 (March 2015), 367--380.
[23]
E. Ordentlich and R. M. Roth. 2012. Low complexity two-dimensional weight-constrained codes. IEEE Transactions on Information Theory 58, 6 (June 2012), 3892--3899.
[24]
M. S. Qureshi, M. Pickett, F. Miao, and J. P. Strachan. 2011. CMOS interface circuits for reading and writing memristor crossbar array. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’11). 2954--2957.
[25]
M. S. Qureshi, W. Yi, G. Medeiros-Ribeiro, and R. S. Williams. 2012. AC sense technique for memristor crossbar. Electronics Letters 48, 13 (June 2012), 757--758.
[26]
A. Radwan, M. A. Zidan, and K. N. Salama. 2010. HP memristor mathematical model for periodic signals and DC. In Proceedings of the IEEE International Midwest Symposium on Circuits and Systems. 861--864.
[27]
Y. Sasago, M. Kinoshita, T. Morikawa, K. Kurotsuchi, S. Hanzawa, T. Mine, A. Shima, Y. Fujisaki, H. Kume, H. Moriya, N. Takaura, and K. Torii. 2009. Cross-point phase change memory with 4f2 cell size driven by low-contact-resistivity poly-si diode. In Proceedings of the Symposium on VLSI Technology. 24--25.
[28]
A. Serb, W. Redman-White, C. Papavassiliou, R. Berdan, and T. Prodromakis. 2015b. Limitations and precision requirements for read-out of passive, linear, selectorless RRAM arrays. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS’15). 189--192.
[29]
A. Serb, W. Redman-White, C. Papavassiliou, and T. Prodromakis. 2015a. Practical determination of individual element resistive states in selectorless RRAM arrays. IEEE Transactions on Circuits and Systems I: Regular Papers PP, 99 (2015), 1--9.
[30]
H. Sun, J. Liu, R. S. Anigundi, N. Zheng, J. Q. Lu, K. Rose, and T. Zhang. 2009. 3D DRAM design and application to 3D multicore systems. IEEE Design Test of Computers 26, 5 (Sept 2009), 36--47.
[31]
I. G. Thakkar and S. Pasricha. 2015. 3D-ProWiz: An energy-efficient and optically-interfaced 3D DRAM architecture with reduced data access overhead. IEEE Transactions on Multi-Scale Computing Systems 1, 3 (Sept. 2015), 168--184.
[32]
P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky, and R. S. Williams. 2009. Writing to and reading from a nano-scale crossbar memory based on memristors. Nanotechnology 20, 42 (2009), 425204.
[33]
C.-H. Wang, Y.-H. Tsai, K.-C. Lin, M.-F. Chang, Y.-C. King, C. J. Lin, S.-S. Sheu, Y.-S. Chen, H.-Y. Lee, F. T. Chen, and M.-J. Tsai. 2011. Three-dimensional 4F2 ReRAM with vertical BJT driver by CMOS logic compatible process. IEEE Transactions on Electron Devices 58, 8 (Aug. 2011), 2466--2472.
[34]
C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li. 2011. Emerging non-volatile memories: Opportunities and challenges. In Proceedings of the 9th International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’11). 325--334.
[35]
S.-M. Yoon, N.-Y. Lee, S.-O. Ryu, K.-J. Choi, Y.-S. Park, S.-Y. Lee, B.-G. Yu, M.-J. Kang, S.-Y. Choi, and M. Wuttig. 2006. Sb-Se-based phase-change memory device with lower power and higher speed operations. IEEE Electron Device Letters 27, 6 (June 2006), 445--447.
[36]
M. A. Zidan, A. M. Eltawil, F. Kurdahi, H. A. H. Fahmy, and K. N. Salama. 2014. Memristor multiport readout: A closed-form solution for sneak paths. IEEE Transactions on Nanotechnology 13, 2 (March 2014), 274--282.
[37]
M. A. Zidan, H. Omran, R. Naous, A. Sultan, H. A. H. Fahmy, W. D. Lu, and K. N. Salama. 2016. Single-readout high-density memristor crossbar. Scientific Reports 6 (May 2016), 18863.

Cited By

View all
  • (2021)BDD-based synthesis approach for in-memory logic realization utilizing Memristor Aided loGIC (MAGIC)Integration10.1016/j.vlsi.2021.08.002Online publication date: Aug-2021
  • (2018)In-memory designing of Delay and Toggle flip-flops utilizing Memristor Aided loGIC (MAGIC)Integration10.1016/j.vlsi.2018.12.005Online publication date: Dec-2018

Index Terms

  1. One-Step Sneak-Path Free Read Scheme for Resistive Crossbar Memory

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Journal on Emerging Technologies in Computing Systems
    ACM Journal on Emerging Technologies in Computing Systems  Volume 13, Issue 2
    Special Issue on Nanoelectronic Circuit and System Design Methods for the Mobile Computing Era and Regular Papers
    April 2017
    377 pages
    ISSN:1550-4832
    EISSN:1550-4840
    DOI:10.1145/3014160
    • Editor:
    • Yuan Xie
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 03 February 2017
    Accepted: 01 October 2016
    Revised: 01 June 2016
    Received: 01 March 2016
    Published in JETC Volume 13, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Sneak-path
    2. crossbar array
    3. read scheme
    4. resistive memory

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • Guangdong Province Science and Technology Program
    • Fundamental Research Funds for the Central Universities

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)20
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)BDD-based synthesis approach for in-memory logic realization utilizing Memristor Aided loGIC (MAGIC)Integration10.1016/j.vlsi.2021.08.002Online publication date: Aug-2021
    • (2018)In-memory designing of Delay and Toggle flip-flops utilizing Memristor Aided loGIC (MAGIC)Integration10.1016/j.vlsi.2018.12.005Online publication date: Dec-2018

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media