Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3057039.3057047acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccaeConference Proceedingsconference-collections
research-article

The Positive Role of Negative Ratings for Recommender

Published: 18 February 2017 Publication History

Abstract

In this paper, inspired by the network-based inference, a new weighted approach is presented to experimentally assess the role of negative data. This weighted approach is conductive to distinguish the contributions from positive and negative ratings. By conducting the positive and negative data with twofold weights, the method relative to NBI and NBIS can obtain a bigger precision and a smaller ranking score, leading to a better recommendation quality. Via the further numerical tests on three benchmark datasets, the results show that the presented approach can better reveal the positive role of negative ratings for improving the recommendation quality. Moreover, by using some appropriate tools, the positive recommendation role of negative data will strengthen, and thoughtlessly removing negative data not only miss some valuable information, but also can weaken the quality of recommendation system.

References

[1]
Zeng, W. Zhu, Y.X. Lv, L.Y. and Zhou, T. Negative ratings play a positive role in information filtering. Physica A. 1 (Nov. 2011), 4486--4493. DOI= http://dx.doi.org/10.1016/j.physa.2011.07.005
[2]
Belkin, N.J. The human element: helping people find what they don't know. Commun. ACM. 43, 8 (Aug. 2000), 58--61. DOI=http://doi.acm.org/10.1145/345124.345143
[3]
Zhou, T. Kuscsik, Z. Liu, J.G. Medo, M. Wakeling, J.R. and Zhang, Y.C. Solving the apparent diversity-accuracy dilemma of recommender systems. Proc. Natl. Acad. Sci. USA. 107, 10 (Mar. 2010), 4511. DOI=10.1073/pnas.1000488107.
[4]
Lu, J. Wu, D.S. Mao, M.S. Wang, W. and Zhang, G.Q. Recommender system application developments: A survey. Deci. Sup. Syst. 74 (Jun. 2015), 12--32. DOI=http://dx.doi.org/10.1016/j.dss.2015.03.008
[5]
Lu, L.Y. Medo, M. Yeung, C.H. Zhang, Y.C. Zhang, Z.K. and Zhou, T. Recommender system. Phys. Rep. 519, 1 (Oct. 2012), 1--49. DOI=http://dx.doi.org/10.1016/j.physrep.2012.02.006.
[6]
Adomavicius, G. and Tuzhilin, A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE T. Knowl. Data En. 17, 6 (Jul. 2005), 734--749. DOI= 10.1109/TKDE.2005.99
[7]
Herlocker, J.L. Konstan, J.A. Terveen, L.G. and Riedl, J.T. Evaluating collaborative filtering recommender systems. ACM T. Inform. Syst. 22, 1 (Jan. 2004), 5--53. DOI=10.1145/963770.963772.
[8]
Pazzani, M.J. and Billsus, D. Content-based recommendation systems. Phys. Rev. Lett. 4321 (Jan. 2007), 2007, 325--341. DOI=10.1007/978-3-540-72079-9.
[9]
Maslov, S. and Zhang, Y.C. Extracting hidden information from knowledge networks. Phys. Rev. Lett. 87, 24 (Jan. 2002), 248701. DOI=https://doi.org/10.1103/PhysRevLett.87.248701.
[10]
Ren, J. Zhou, T. and Zhang, Y.C. Information filtering via self-consistent refinement. Europhys. Lett. 82 (May. 2008), 58007.DOI=10.1209/0295-5075/82/58007.
[11]
Goldberg, K. Roeder, T. Gupta, D. and Perkins, C. Eigentaste: A constant time collaborative filtering algorithm. Infrom. Retrieval. 4, 2 (Jul. 2001), 133--151. DOI=10.1023/A:1011419012209.
[12]
Burke, R. Knowledge-based Recommender Systems. Encyclopedia Lib. Inf. Syst. 69 (May. 2000), 175. DOI=http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3078.
[13]
Zhang, Z. Lin, H. Liu, K. Wu, D. Zhang, G. and Lu, J. A hybrid fuzzy-based personalized recommender system for telecom products/services. Inform. Sciences. 235, 20 (Jun. 2013), 117--129. DOI=http://dx.doi.org/10.1016/j.ins.2013.01.025.
[14]
Lu, J. Shambour, Q. Xu, Y. Lin, Q. and Zhang, G. A web based personalized business partner recommendation system using fuzzy semantic techniques. Comput. Intell. 29, 1 (Feb. 2013), 37--69. DOI=10.1111/j.1467-8640.2012.00427.x.
[15]
Adomavicius, G. and Tuzhilin, A. Context-aware recommender systems. In Proceedings of the 2008 ACM conference on Recommender systems. New York, NY, USA: ACM. 2009. DOI=10.1145/1454008.1454068.
[16]
Masthoff, J. Group recommender systems: combining individual models. Recommender Systems Handbook. (Oct. 2010) 677--702. DOI=10.1007/978-0-387-85820-3_21.
[17]
Burke, R. Hybrid Recommender Systems: Survey and Experiments. User Model User-Adap. 12, 4 (Nov. 2002), 331--370. DOI=10.1023/A:1021240730564.
[18]
Zeng, W. Shang, M.S. Zhang, Q.M. Lv, L. and Zhou, T. Can dissimilar users contribute to accuracy and diversity of personalized recommendation. Int. J. Mod. Phys. C. 21, 10 (Oct. 2010), 1217--1227. DOI=http://dx.doi.org/10.1142/S0129183110015786.
[19]
Zhou, T. Jiang, L.L. Su, R.Q. and Zhang, Y.C. Effect of initial configuration on network-based recommendation. Europhys. Lett. 81, 5 (Feb. 2008), 15--18. DOI=10.1209/0295-5075/81/58004.
[20]
Liu, J.G. Guo, Q. and Zhang, Y.C. Information filtering via weighted heat conduction algorithm. Physica A. 390, 12 (Jun. 2011), 2414--2420. DOI=http://dx.doi.org/10.1016/j.physa.2011.02.023.
[21]
Xin, P. Deng, G.S. and Liu, J.G. Weighted bipartite network and personalized recommendation. Physics Procedia. 3, 5 (Aug. 2010), 1867--1876. DOI=10.1016/j.phpro.2010.07.031.
[22]
Liu, R.R. Liu, J.G. Jia, C.X. and Wang, B.H. Heritability promotes cooperation in spatial public goods games. Physica A. 389, 24 (Dec. 2010), 5719--5724. DOI=http://dx.doi.org/10.1016/j.physa.2010.08.043.
[23]
Lian, J. Liu, Y. Zhang, Z.J. and Gui, C.N. Personalized recommendation via an improved NBI algorithm and user influence model in a Microblog network. Physica A. 392, 19 (Oct. 2013), 4594--4605. DOI=http://dx.doi.org/10.1016/j.physa.2013.05.025.
[24]
Wu, P. and Zhang, Z.K. Enhancing personalized recommendations on weighted social tagging networks. Physics Procedia. 3, 5 (Aug. 2010), 1877--1885. DOI=10.1016/j.phpro.2010.07.032.
[25]
Zhou, T. Su, R.Q. Liu, R.R. Jiang, L.L. Wang, B.H. and Zhang, Y.C. Accurate and diverse recommendations via eliminating redundant correlations. NEW J. Phys. 11, 12 (Dec. 2009), 123008. DOI=10.1088/1367-2630/11/12/123008.
[26]
Zhou, T. Ren, J. Medo, M. and Zhang, Y.C. Bipartite network projection and personal recommendation. Phys. Rev. E. 76 (Oct. 2007), 046115. DOI=10.1103/PhysRevE.76.046115.

Cited By

View all
  • (2022)Discriminate2Rec: Negation-based dynamic discriminative interest-based preference learning for semantics-aware content-based recommendationExpert Systems with Applications10.1016/j.eswa.2022.116988199(116988)Online publication date: Aug-2022

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICCAE '17: Proceedings of the 9th International Conference on Computer and Automation Engineering
February 2017
365 pages
ISBN:9781450348096
DOI:10.1145/3057039
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

  • Macquarie U., Austarlia

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 February 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Big data
  2. Bipartite network
  3. Recommender system
  4. Weighted approach

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ICCAE '17

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Discriminate2Rec: Negation-based dynamic discriminative interest-based preference learning for semantics-aware content-based recommendationExpert Systems with Applications10.1016/j.eswa.2022.116988199(116988)Online publication date: Aug-2022

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media