Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3041021.3051096acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
tutorial

Semantic Data Management in Practice

Published: 03 April 2017 Publication History

Abstract

After years of research and development, standards and technologies for semantic data are sufficiently mature to be used as the foundation of novel data science projects that employ semantic technologies in various application domains such as bio-informatics, materials science, criminal intelligence, and social science. Typically, such projects are carried out by domain experts who have a conceptual understanding of semantic technologies but lack the expertise to choose and to employ existing data management solutions for the semantic data in their project. For such experts, including domain-focused data scientists, project coordinators, and project engineers, our tutorial delivers a practitioner's guide to semantic data management. We discuss the following important aspects of semantic data management and demonstrate how to address these aspects in practice by using mature, production-ready tools: i) storing and querying semantic data; ii) understanding, iii) searching, and iv) visualizing the data; v) automated reasoning; vi) integrating external data and knowledge; and vii) cleaning the data.

References

[1]
D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach. SW-Store: A Vertically Partitioned DBMS for Semantic Web Data Management. VLDB Journal, 18(2):385--406, 2009.
[2]
Z. Abedjan, T. Grütze, A. Jentzsch, and F. Naumann. Profiling and mining RDF data with ProLOD. In Proceedings of the IEEE 30th International Conference on Data Engineering (ICDE), pages 1198--1201, 2014.
[3]
N. Bikakis and T. K. Sellis. Exploration and Visualization in the Web of Big Linked Data: A Survey of the State of the Art. In Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Conference, 2016.
[4]
B. Bishop, A. Kiryakov, Z. Tashev, M. Damova, and K. I. Simov. OWLIM Reasoning over FactForge. In Proceedings of the 1st International Workshop on OWL Reasoner Evaluation (ORE), 2012.
[5]
O. Curé and G. Blin. RDF Database Systems: Triples Storage and SPARQL Query Processing. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2014.
[6]
O. Curé, G. Blin, D. Revuz, and D. C. Faye. WaterFowl: A Compact, Self-Indexed and Inference-Enabled Immutable RDF Store. In Proceedings of the 11th Extended Semantic Web Conference (ESWC), pages 302--316, 2014.
[7]
R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J. J. Carroll, and B. McBride. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, Feb. 2014.
[8]
A. Dadzie and E. Pietriga. Visualisation of Linked Data - Reprise. Semantic Web, 8(1):1--21, 2017.
[9]
A. Dadzie and M. Rowe. Approaches to Visualising Linked Data: A Survey. Semantic Web, 2(2):89--124, 2011.
[10]
A. Doan, J. Madhavan, P. M. Domingos, and A. Y. Halevy. Learning to map between ontologies on the semantic web. In Proceedings of the Eleventh International World Wide Web Conference, WWW 2002, May 7--11, 2002, Honolulu, Hawaii, pages 662--673, 2002.
[11]
M. Dudás, V. Svátek, and J. Mynarz. Dataset Summary Visualization with LODSight. In The Semantic Web: ESWC 2015 Satellite Events, pages 36--40, 2015.
[12]
S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. TriAD: A Distributed Shared-nothing RDF Engine Based on Asynchronous Message Passing. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD '14, pages 289--300, New York, NY, USA, 2014. ACM.
[13]
S. Harris, A. Seaborne, and E. Prud'hommeaux. SPARQL 1.1 Query Language. W3C Recommendation, Mar. 2013.
[14]
O. Hartig. Querying a Web of Linked Data - Foundations and Query Execution, volume 24 of Studies on the Semantic Web. IOS Press, 2016.
[15]
J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL Querying of Large RDF Graphs. PVLDB, 4(11):1123--1134, 2011.
[16]
S. Khatchadourian and M. P. Consens. ExpLOD: Summary-Based Exploration of Interlinking and RDF Usage in the Linked Open Data Cloud. In Proceedings of the 7th Extended Semantic Web Conference (ESWC), pages 272--287, 2010.
[17]
C. A. Knoblock, P. A. Szekely, J. L. Ambite, A. Goel, S. Gupta, K. Lerman, M. Muslea, M. Taheriyan, and P. Mallick. Semi-Automatically Mapping Structured Sources into the Semantic Web. In Proceedings of the 9th Extended Semantic Web Conference (ESWC), pages 375--390, 2012.
[18]
D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen, and A. Zaveri. Test-Driven Evaluation of Linked Data Quality. In Proceedings of the 23rd International World Wide Web Conference (WWW), pages 747--758, 2014.
[19]
S. Lohmann, S. Negru, F. Haag, and T. Ertl. Visualizing Ontologies with VOWL. Semantic Web, 7(4):399--419, 2016.
[20]
F. Maali, R. Cyganiak, and V. Peristeras. Re-using Cool URIs: Entity Reconciliation Against LOD Hubs. In Proceedings of the WWW2011 Workshop on Linked Data on the Web (LDOW), 2011.
[21]
P. N. Mendes, H. Mühleisen, and C. Bizer. Sieve: Linked Data Quality Assessment and Fusion. In Proceedings of the 2012 Joint EDBT/ICDT Workshops, pages 116--123, 2012.
[22]
N. Mihindukulasooriya, M. Poveda-Villalón, R. García-Castro, and A. Gómez-Pérez. Loupe - An Online Tool for Inspecting Datasets in the Linked Data Cloud. In Proceedings of the ISWC 2015 Posters & Demonstrations Track, 2015.
[23]
B. Motik, Y. Nenov, R. E. F. Piro, and I. Horrocks. Incremental Update of Datalog Materialisation: The Backward/Forward Algorithm. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, pages 1560--1568, 2015.
[24]
H. Müller and J.-C. Freytag. Problems, Methods, and Challenges in Comprehensive Data Cleansing. Technical Report HUB-IB-164, Humboldt University Berlin, 2003.
[25]
T. Neumann and G. Weikum. RDF-3X: A RISC-Style Engine for RDF. PVLDB, 1(1):647--659, 2008.
[26]
A. N. Ngomo and S. Auer. LIMES -- A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), pages 2312--2317, 2011.
[27]
I. Niles and A. Pease. Towards a standard upper ontology. In FOIS, pages 2--9, 2001.
[28]
N. F. Noy. Semantic integration: A survey of ontology-based approaches. SIGMOD Record, 33(4):65--70, 2004.
[29]
E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. IEEE Data Engineering Bulletin, 23(4):3--13, 2000.
[30]
J. Subercaze, C. Gravier, J. Chevalier, and F. Laforest. Inferray: Fast In-Memory RDF Inference. PVLDB, 9(6):468--479, Jan. 2016.
[31]
T. Tudorache, N. F. Noy, S. W. Tu, and M. A. Musen. Supporting Collaborative Ontology Development in Protégé. In Proceedings of the 7th International Semantic Web Conference (ISWC), pages 17--32, 2008.
[32]
J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, and H. E. Bal. WebPIE: A Web-scale Parallel Inference Engine using MapReduce. Journal of Web Semantics, 10:59--75, 2012.
[33]
R. Verborgh and M. De Wilde. Using OpenRefine. Packt Publishing, 1st edition, 2013.
[34]
J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk -- A Link Discovery Framework for the Web of Data. In Proceedings of the WWW2009 Workshop on Linked Data on the Web (LDOW), 2009.
[35]
C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Indexing for Semantic Web Data Management. PVLDB, 1(1):1008--1019, 2008.
[36]
A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer. Quality Assessment for Linked Data: A Survey. Semantic Web, 7(1):63--93, 2016.

Cited By

View all
  • (2019)Visualizing the History and Perspectives of Disaster Medicine: A Bibliometric AnalysisDisaster Medicine and Public Health Preparedness10.1017/dmp.2019.31(1-8)Online publication date: 21-Jun-2019

Index Terms

  1. Semantic Data Management in Practice

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    WWW '17 Companion: Proceedings of the 26th International Conference on World Wide Web Companion
    April 2017
    1738 pages
    ISBN:9781450349147

    Sponsors

    • IW3C2: International World Wide Web Conference Committee

    In-Cooperation

    Publisher

    International World Wide Web Conferences Steering Committee

    Republic and Canton of Geneva, Switzerland

    Publication History

    Published: 03 April 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. cleaning
    2. querying
    3. rdf
    4. reasoning
    5. search
    6. semantic technologies
    7. storage
    8. visualization

    Qualifiers

    • Tutorial

    Funding Sources

    • CENIIT
    • FUI

    Conference

    WWW '17
    Sponsor:
    • IW3C2

    Acceptance Rates

    WWW '17 Companion Paper Acceptance Rate 164 of 966 submissions, 17%;
    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2019)Visualizing the History and Perspectives of Disaster Medicine: A Bibliometric AnalysisDisaster Medicine and Public Health Preparedness10.1017/dmp.2019.31(1-8)Online publication date: 21-Jun-2019

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media