Abstract
According to recent estimates, about 90% of consumer received emails are machine-generated. Such messages include shopping receipts, promotional campaigns, newsletters, booking confirmations, etc. Most such messages are created by populating a fixed template with a small amount of personalized information, such as name, salutation, reservation numbers, dates, etc. Web mail providers (Gmail, Hotmail, Yahoo) are leveraging the structured nature of such emails to extract salient information and use it to improve the user experience: e.g. by automatically entering reservation data into a user calendar, or by sending alerts about upcoming shipments. To facilitate these extraction tasks it is helpful to classify templates according to their category, e.g. restaurant reservations or bill reminders, since each category triggers a particular user experience.
Recent research has focused on discovering the causal thread of templates, e.g. inferring that a shopping order is usually followed by a shipping confirmation, an airline booking is followed by a confirmation and then by a "ready to check in" message, etc. Gamzu et al. took this idea one step further by implementing a method to predict the template category of future emails for a given user based on previously received templates. The motivation is that predicting future emails has a wide range of potential applications, including better user experiences (e.g. warning users of items ordered but not shipped), targeted advertising (e.g. users that recently made a flight reservation may be interested in hotel reservations), and spam classification (a message that is part of a legitimate causal thread is unlikely to be spam).
The gist of the Gamzu et al. approach is modeling the problem as a Markov chain, where the nodes are templates or temporal events (e.g. the first day of the month). This paper expands on their work by investigating the use of neural networks for predicting the category of emails that will arrive during a fixed-sized time window in the future. We consider two types of neural networks: multi-layer perceptrons (MLP), a type of feedforward neural network; and long short-term memory (LSTM), a type of recurrent neural network. For each type of neural network, we explore the effects of varying their configuration (e.g. number of layers or number of neurons) and hyper-parameters (e.g. drop-out ratio). We find that the prediction accuracy of neural networks vastly outperforms the Markov chain approach, and that LSTMs perform slightly better than MLPs. We offer some qualitative interpretation of our findings and identify some promising future directions.