Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2968220.2968241acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvinciConference Proceedingsconference-collections
short-paper

Do Defaults Matter?: Evaluating the Effect of Defaults on User Preference for Multi-Class Scatterplots

Published: 24 September 2016 Publication History

Abstract

With the increasing availability and popularity of visualization tools, it is easier than ever to create visual representations of data. The available tools and libraries work for a range of users from non-programmers to those with significant programming experience. A major challenge, however, is that a majority of users frequently stick with the default settings when using software.
In this paper, we evaluate the effect of using defaults when visualizing the same data in four widely-used visualization tools: Tableau Desktop, Microsoft Excel, the ggplot2 R library, and the matplotlib Python library. We used the default settings in these tools to create multi-class scatterplots for several synthetic datasets generated using the scikit-learn package in Python.
We conducted a within-subjects pilot study with 39 users and a follow-up study with 202 users to explore whether users have strong preferences for different default settings. We found that computer science students prefer ggplot2, females preferred Tableau, young users or those with some college preferred Excel, and users in most other categories preferred matplotlib.

References

[1]
S. Bateman, R. L. Mandryk, C. Gutwin, A. Genest, D. McDine, and C. Brooks. Useful junk?: The effects of visual embellishment on comprehension and memorability of charts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 2573--2582, 2010.
[2]
M. Borkin, Z. Bylinskii, N. W. Kim, C. M. Bainbridge, C. Yeh, D. Borkin, H. Pfister, and A. Oliva. Beyond memorability: Visualization recognition and recall. IEEE Transactions on Visualization and Computer Graphics, 22(1):519--528, 2016.
[3]
M. A. Borkin, A. A. Vo, Z. Bylinskii, P. Isola, S. Sunkavalli, A. Oliva, and H. Pfister. What makes a visualization memorable? IEEE Transactions on Visualization and Computer Graphics, 19(12):2306--2315, 2013.
[4]
D. Borland and R. M. Taylor II. Rainbow color map (still) considered harmful. IEEE Computer Graphics and Applications, (2):14--17, 2007.
[5]
N. Boukhelifa, A. Bezerianos, T. Isenberg, and J.-D. Fekete. Evaluating sketchiness as a visual variable for the depiction of qualitative uncertainty. IEEE Transactions on Visualization and Computer Graphics, 18(12):2769--2778, 2012.
[6]
L. Byron and M. Wattenberg. Stacked graphs--geometry & aesthetics. IEEE Transactions on Visualization and Computer Graphics, 14(6):1245--1252, 2008.
[7]
N. Cawthon and A. V. Moere. The effect of aesthetic on the usability of data visualization. In Proceedings of the 11th International Conference on Information Visualization, pages 637--648, 2007.
[8]
S. Evergreen and C. Metzner. Design principles for data visualization in evaluation. New Directions for Evaluation, 140:5--20, 2013.
[9]
J. Friend. Why did Microsoft change the default font to Calibri? URL: http://qr.ae/1KPYLj. Accessed: 2016-03-18.
[10]
M. Friendly and D. Denis. The early origins and development of the scatterplot. Journal of the History of the Behavioral Sciences, 41(2):103--130, 2005.
[11]
A. R. Gaviria. When is information visualization art? determining the critical criteria. Leonardo, 41(5):479--482, 2008.
[12]
L. Harrison, K. Reinecke, and R. Chang. Infographic aesthetics: Designing for the first impression. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 1187--1190, 2015.
[13]
J. D. Hunter et al. Matplotlib: A 2D graphics environment. Computing in Science and Engineering, 9(3):90--95, 2007.
[14]
A. V. Moere, M. Tomitsch, C. Wimmer, B. Christoph, and T. Grechenig. Evaluating the effect of style in information visualization. IEEE Transactions on Visualization and Computer Graphics, 18(12):2739--2748, 2012.
[15]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12:2825--2830, 2011.
[16]
B. E. Rogowitz and L. A. Treinish. Data visualization: The end of the rainbow. IEEE Spectrum, 35(12):52--59, 1998.
[17]
B. Saket, C. Scheidegger, and S. Kobourov. Towards understanding enjoyment and flow in information visualization. In Eurographics Conference on Visualization (EuroVis) Short Papers, 2015.
[18]
T. Skog, S. Ljungblad, and L. E. Holmquist. Between aesthetics and utility: Designing ambient information visualizations. In IEEE Symposium on Information Visualization, pages 233--240, 2003.
[19]
L. G. Tateosian, C. G. Healey, and J. T. Enns. Engaging viewers through nonphotorealistic visualizations. In Proceedings of the 5th International Symposium on Non-Photorealistic Animation and Rendering, pages 93--102, 2007.
[20]
F. B. Viégas and M. Wattenberg. Artistic data visualization: Beyond visual analytics. In Online Communities and Social Computing, pages 182--191. Springer, 2007.
[21]
F. B. Viegas, M. Wattenberg, and J. Feinberg. Participatory visualization with Wordle. IEEE Transactions on Visualization and Computer Graphics, 15(6):1137--1144, 2009.
[22]
F. B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, and M. McKeon. ManyEyes: A site for visualization at internet scale. IEEE Transactions on Visualization and Computer Graphics, 13(6):1121--1128, 2007.
[23]
H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer Science & Business Media, 2009.
[24]
J. Wood, P. Isenberg, T. Isenberg, J. Dykes, N. Boukhelifa, and A. Slingsby. Sketchy rendering for information visualization. IEEE Transactions on Visualization and Computer Graphics, 18(12):2749--2758, 2012.
[25]
Microsoft Excel. products.office.com/en-us/excel (Accessed 2016-03-18).
[26]
Tableau Desktop. tableau.com/products/desktop (Accessed 2016-03-13).
[27]
Tableau Public. public.tableau.com (Accessed 2016-03-13).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
VINCI '16: Proceedings of the 9th International Symposium on Visual Information Communication and Interaction
September 2016
173 pages
ISBN:9781450341493
DOI:10.1145/2968220
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 September 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Defaults
  2. aesthetics
  3. usability
  4. user study

Qualifiers

  • Short-paper
  • Research
  • Refereed limited

Conference

VINCI '16

Acceptance Rates

VINCI '16 Paper Acceptance Rate 14 of 42 submissions, 33%;
Overall Acceptance Rate 71 of 193 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 126
    Total Downloads
  • Downloads (Last 12 months)9
  • Downloads (Last 6 weeks)2
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media