Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Open access

Designing a Million-Qubit Quantum Computer Using a Resource Performance Simulator

Published: 28 December 2015 Publication History

Abstract

The optimal design of a fault-tolerant quantum computer involves finding an appropriate balance between the burden of large-scale integration of noisy components and the load of improving the reliability of hardware technology. This balance can be evaluated by quantitatively modeling the execution of quantum logic operations on a realistic quantum hardware containing limited computational resources. In this work, we report a complete performance simulation software tool capable of (1) searching the hardware design space by varying resource architecture and technology parameters, (2) synthesizing and scheduling a fault-tolerant quantum algorithm within the hardware constraints, (3) quantifying the performance metrics such as the execution time and the failure probability of the algorithm, and (4) analyzing the breakdown of these metrics to highlight the performance bottlenecks and visualizing resource utilization to evaluate the adequacy of the chosen design. Using this tool, we investigate a vast design space for implementing key building blocks of Shor’s algorithm to factor a 1,024-bit number with a baseline budget of 1.5 million qubits. We show that a trapped-ion quantum computer designed with twice as many qubits and one-tenth of the baseline infidelity of the communication channel can factor a 2,048-bit integer in less than 5 months.

References

[1]
D. Aharonov and M. Ben-Or. 1997. Fault-tolerant quantum computation with constant error fault-tolerant quantum computation with constant error fault-tolerant quantum computation with constant error. In Proceedings of the 29th Annual Symposium on Theory of Computing, 176--188.
[2]
M. Ahsan, B.-S. Choi, and J. Kim. 2013. Performance simulator based on hardware resources constraints for ion trap quantum computer. In IEEE 31st International Conference on Computer Design (ICCD’13), 411--418.
[3]
M. Ahsan and J. Kim. 2015. Optimization of quantum computer architecture using a resource-performance simulator. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE’& Exhibition (DATE’’15). EDA Consortium, San Jose, CA, 1108--1113.
[4]
P. Aliferis, D. Gottesman, and J. Preskill. 2005. Quantum accuracy threshold for concatenated distance-3 codes. arXiv:quant-ph/0504218 (2005).
[5]
S. Balensiefer, L. Kreger-Stickles, and M. Oskin. 2005. QUALE: Quantum architecture layout evaluator. In Proceedings of the SPIE, Vol. 5815, 103--114.
[6]
D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill. 1996. Efficient networks for quantum factoring. Phys. Rev. A 54 (1996), 1034--1063.
[7]
S. Crain, E. Mount, S.-Y. Baek, and J. Kim. 2014. Individual addressing of trapped 171Yb + ion qubits using a microelectromechanical systems-based beam steering system. Appl. Phys. Lett. 105 (2014), 181115.
[8]
S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton. 2004. A new quantum ripple-carry addition circuit. arXiv preprint quant-ph/0410184 (2004).
[9]
T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore. 2006. A logarithmic-depth quantum carry-lookahead adder. Quantum Inf. Comput. 6 (2006), 351--369.
[10]
L.-M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe. 2004. Scaling trapped ions for quantum computation with probabilistic ion-photon mapping. Quant. Inf. Comp. 4 (2004), 165--173.
[11]
J. Edmonds. 1965. Paths, trees, and flowers. Can. J. Math. 17, 3 (1965), 449--467.
[12]
A. G. Fowler and L. C. L. Hollenberg. 2004. Scalability of shor’s algorithm with a limited set of rotation gates. Phys. Rev. A 70, 3 (2004), 032329.
[13]
A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. 2012. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86, 3 (2012), 032324.
[14]
A. Galiautdinov, A. N. Korotkov, and J. M. Martinis. 2012. Resonator-zero-qubit architecture for superconducting qubits. Phys. Rev. A 85 (2012), 042321.
[15]
B. Giles and P. Selinger. 2013. Exact synthesis of multiqubit Clifford+T circuits. Phys. Rev. A 87 (2013), 032332.
[16]
D. Gottesman and I. L. Chuang. 1999. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402 (October 1999), 390--393.
[17]
N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, et al. 2014. Ball-grid array architecture for microfabricated ion traps. arXiv preprint arXiv:1412.5576 (2014).
[18]
P. Papadopoulos J. Eisert, K. Jacobs, and M. B. Plenio. 2000. Optimal local implementation of non-local quantum gates. Phys. Rev. A 62 (2000), 052317.
[19]
A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi. 2014. ScaffCC: A framework for compilation and analysis of quantum computing programs. In Proceedings of the 11th ACM Conference on Computing Frontiers. ACM, 1.
[20]
L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin. 2009. Quantum repeater with encoding. Phys. Rev. A 79, 3 (Mar 2009), 032325.
[21]
S. Jordan. 2011. Quantum algorithm zoo. Retrieved June 27, 2013 from http://math.nist.gov/quantum/zoo/.
[22]
M. Juvan and B. Mohar. 1992. Optimal linear labelings and eigenvalues of graphs. Discrete Appl. Math. 36 (1992), 153--168.
[23]
J. Kim and C. Kim. 2009. Integrated optical approach to trapped ion quantum computation. Quantum Inf. Comput. 9 (2009), 181--202.
[24]
J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates. 2003. 1100 X 1100 port MEMS-based optical crossconnect with 4-dB maximum loss. IEEE Photon. Technol. Lett. 15 (2003), 1537--1539.
[25]
A. Y. Kitaev. 2003. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 1 (2003), 2--30.
[26]
T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, et al. 2010. Factorization of a 768-bit RSA modulus. In Advances in Cryptology (CRYPTO’10). Springer, 333--350.
[27]
V. Kliuchnikov, D. Maslov, and M. Mosca. 2013. Asymptotically optimal approximation of single qubit unitaries by clifford and T circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110 (2013), 190502.
[28]
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. OBrien. 2010. Quantum computers. Nature 464, 7285 (2010), 45--53.
[29]
T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, and I. L. Chuang. 2005. A quantum logic array microarchitecture: Scalable quantum data movement and computation. In Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’38), 12--23.
[30]
C. Monroe and J. Kim. 2013. Scaling the ion trap quantum processor. Science 339 (2013), 1164.
[31]
C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim. 2014. Large scale modular quantum computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89 (2014), 022317.
[32]
M. A. Nielsen and I. L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press.
[33]
S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe. 2007. Manipulation and detection of a trapped Yb + hyperfine qubit. Phys. Rev. A 76 (2007), 052314.
[34]
P. W. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 5 (1997), 1484--1509.
[35]
A. M. Steane. 1996. Error correcting codes in quantum theory. Phys. Rev. Lett. 77 (1996), 793--797.
[36]
K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov. 2006. A layered software architecture for quantum computing design tools. Computer 39 (2006), 74--83.
[37]
D. D. Thaker, T. S. Metodi, A. W. Cross, I. L. Chuang, and F. T. Chong. 2006. Quantum memory hierarchies: Efficient designs to match available parallelism in quantum computing. In ACM SIGARCH Computer Architecture News, Vol. 34. IEEE Computer Society, 378--390.
[38]
R. Van Meter and C. Horsman. 2013. A blueprint for building a quantum computer. Commun. ACM 56, 10 (2013), 84--93.
[39]
R. Van Meter and K. M. Itoh. 2005. Fast quantum modular exponentiation. Phys. Rev. A 71, 5 (May 2005), 052320.
[40]
R. Van Meter, W. J. Munro, K. Nemoto, and K. M. Itoh. 2008. Arithmetic on a distributed-memory quantum multicomputer. J. Emerg. Technol. Comput. Syst. 3, Article 2 (2008), 23 pages.
[41]
V. Vedral, A. Barenco, and A. Ekert. 1996. Quantum networks for elementary arithmetic operations. Phys. Rev. A 54 (1996), 147--153.
[42]
M. Whitney, N. Isailovic, Y. Patel, and J. Kubiatowicz. 2007. Automated generation of layout and control for quantum circuits. In Proceedings of the 4th International Conference on Computing Frontiers, 83--94.
[43]
M. G. Whitney, N. Isailovic, Y. Patel, and J. Kubiatowicz. 2009. A fault tolerant, area efficient architecture for Shor’s factoring algorithm. ACM SIGARCH Comput. Arch. News 37, 3 (2009), 383--394.
[44]
B. Zeng, A. Cross, and I. L. Chuang. 2011. Transversality versus universality for additive quantum codes. IEEE Trans. Inf. Theory 57, 9 (2011), 6272--6284.
[45]
X. Zhou, D. W. Leung, and I. L. Chuang. 2000. Methodology for quantum logic gate construction. Phys. Rev. A 62 (2000), 052316.

Cited By

View all
  • (2024)Designing a Quantum Computer to Gear up Artificial Intelligence for Industry 4.0Topics in Artificial Intelligence Applied to Industry 4.010.1002/9781394216147.ch13(239-255)Online publication date: 5-Apr-2024
  • (2022)Remote Entanglement of Superconducting Qubits via Solid-State Spin Quantum MemoriesPhysical Review Applied10.1103/PhysRevApplied.18.06403918:6Online publication date: 14-Dec-2022
  • (2022)Quantum computing challenges in the software industry. A fuzzy AHP-based approachInformation and Software Technology10.1016/j.infsof.2022.106896147(106896)Online publication date: Jul-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems  Volume 12, Issue 4
Regular Papers
July 2016
394 pages
ISSN:1550-4832
EISSN:1550-4840
DOI:10.1145/2856147
  • Editor:
  • Yuan Xie
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 28 December 2015
Accepted: 01 September 2015
Revised: 01 July 2015
Received: 01 May 2015
Published in JETC Volume 12, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Quantum architecture
  2. architecture scalability
  3. hardware constraints
  4. performance simulation tool
  5. resource performance tradeoffs

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Quantum Computer Science (QCS) program
  • Intelligence Advanced Research Projects Activity (IARPA) under the Multi-Qubit Coherent Operation (MQCO) Program

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)203
  • Downloads (Last 6 weeks)23
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Designing a Quantum Computer to Gear up Artificial Intelligence for Industry 4.0Topics in Artificial Intelligence Applied to Industry 4.010.1002/9781394216147.ch13(239-255)Online publication date: 5-Apr-2024
  • (2022)Remote Entanglement of Superconducting Qubits via Solid-State Spin Quantum MemoriesPhysical Review Applied10.1103/PhysRevApplied.18.06403918:6Online publication date: 14-Dec-2022
  • (2022)Quantum computing challenges in the software industry. A fuzzy AHP-based approachInformation and Software Technology10.1016/j.infsof.2022.106896147(106896)Online publication date: Jul-2022
  • (2021)Exact Physical Design of Quantum Circuits for Ion-Trap-based Quantum Architectures2021 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE51398.2021.9474188(344-349)Online publication date: 1-Feb-2021
  • (2021)Automated window-based partitioning of quantum circuitsPhysica Scripta10.1088/1402-4896/abd57c96:3(035102)Online publication date: 7-Jan-2021
  • (2020)Architecting noisy intermediate-scale trapped ion quantum computersProceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture10.1109/ISCA45697.2020.00051(529-542)Online publication date: 30-May-2020
  • (2020) A congestion‐aware mixed integer linear programming model for placement and scheduling of quantum circuits with a two‐level heuristic solution approach Quantum Engineering10.1002/que2.573:1Online publication date: 22-Dec-2020
  • (2019)SAQIPACM Transactions on Architecture and Code Optimization10.1145/331187916:2(1-21)Online publication date: 18-Apr-2019
  • (2018)Performance of topological quantum error-correction in the presence of correlated noiseQuantum Information & Computation10.5555/3370214.337021618:9-10(743-778)Online publication date: 1-Aug-2018
  • (2018)A study on the use of quantum computers, risk assessment and security problems2018 6th International Symposium on Digital Forensic and Security (ISDFS)10.1109/ISDFS.2018.8355318(1-6)Online publication date: Mar-2018
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media