Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2816839.2816894acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiciipConference Proceedingsconference-collections
research-article

A new Automatic approach for Understanding the Spontaneous Utterance in Human-Machine Dialogue based on Automatic Text Categorization

Published: 23 November 2015 Publication History

Abstract

In the present paper, we suggested an implementation of an automatic understanding system of the statement in Human-Machine Communication. The architecture we adopted was based on a stochastic approach that assumes that the understanding of a statement is nothing but a simple theme identification process. Therefore, we presented a new theme identification method based on a documentary retrieval technique which is text (document) classification [2]. The method we suggested was validated on a basic platform that give information related to university schooling management (Querying a student database), taking into consideration a textual input in french. This method has achieved a theme identification rate of 95% and a correctly utterance understanding rate of about 91.66%.

References

[1]
H. Aust, M. Oerder, F. Seide, and V. Steinbiss. The philips automatic train timetable information system. Speech Communication, 17(3):249--262, 1995.
[2]
A. Bawakid and M. Oussalah. A semantic-based text classification system. In Cybernetic Intelligent Systems (CIS), 2010 IEEE 9th International Conference on, pages 1--6, Sept 2010.
[3]
C. Bousquet-Vernhettes. un environnement de compréhension de la parole pour les serveurs interactifs: l'environnement cacao. Rencontres Jeunes Chercheurs en Interaction Homme Machine (RJC-IHM'2000), pages 77--80, 2000.
[4]
CTU. The 3rd International Workshop on Cognitive-based Text Understanding and Web Wis-dom. http://iic.shu.edu.cn/huiyi/CTUW3rdCFP.html, 19/09/2011. {Online; accessed 13/12/2014}.
[5]
B. Huber. Stoplist. http://textalyser.net/stoplist.html, 2004. {Online; accessed 13/11/2014}.
[6]
N. Indurkhya and F. J. Damerau. Handbook of natural language processing, volume 2. CRC Press, 2010.
[7]
S. Jamoussi, K. Smaïli, and J.-P. Haton. Understanding speech based on a bayesian concept extraction method. In Text, Speech and Dialogue, pages 181--188. Springer, 2003.
[8]
T. Kiss and J. Strunk. Unsupervised multilingual sentence boundary detection. Computational Linguistics, 32(4):485--525, 2006.
[9]
A. Korzybski and D. Kohn. Une carte n'est pas un territoire.: Prolégomènes aux systèmes non-aristotéliciens et à la sémantique générale. éditions de lâĂŹéclat, 2001.
[10]
T. K. Landauer and S. T. Dumais. A solution to plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review, 104(2):211, 1997.
[11]
J. Leskovec. Dimensionality reduction pca, svd, mds, ica, and friends. Machine Learning recitation April, 27, 2006.
[12]
M. Lichouri, A. Djeradi, and R. Djeradi. Une approche statistico-linguistique pour lâĂŹextraction de concepts sémantiques: Une première étape vers un système générique de dialogue homme-machine. personal communication, 2015.
[13]
S. Loria. Tutorial: Finding Important Words in Text Using TF-IDF. http://stevenloria.com/finding-important-words-in-a-document-using-tf-idf/, 01/09/2013. {Online; accessed 12/09/2014}.
[14]
C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval, volume 1. Cambridge university press Cambridge, 2008. {http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf}.
[15]
K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using em. Machine learning, 39(2-3):103--134, 2000.
[16]
NLTK. NLTK, Natural Langage Tool Kit. http://www.nltk.org. {Online; accessed 13/03/2015}.
[17]
D. D. Palmer and M. A. Hearst. Adaptive multilingual sentence boundary disambiguation. Computational Linguistics, 23(2):241--267, 1997.
[18]
P. Preux. Segmentation par les k-moyennes. http://www.grappa.univ-lille3.fr/~ppreux/ensg/miashs/fouilleDeDonneesII/tp/k-moyennes/index.html, 08/04/2010. {Online; accessed 12/09/2014}.
[19]
quetedesavoir. Classification topologique non supervisÃl'e pour des donnÃl'es catÃl'gorielles. http://quetedesavoir.blogspot.com/2011/06/classification-topologique-non_20.html, 20/06/2011. {Online; accessed 12/10/2014}.
[20]
L. A. Ramshaw and M. P. Marcus. Text chunking using transformation-based learning. arXiv preprint cmp-lg/9505040, 1995. {http://www.aclweb.org/anthology-new/W/W95/W95-0107.pdf}.
[21]
S. Seneff. Tina: A natural language system for spoken language applications. Computational linguistics, 18(1):61--86, 1992.
[22]
J. Steinberger and K. Jezek. Using latent semantic analysis in text summarization and summary evaluation. In Proc. ISIMâĂŹ04, pages 93--100, 2004.
[23]
C. Van Rijsbergen. Information retrieval. dept. of computer science, university of glasgow. URL: citeseer. ist. psu. edu/vanrijsbergen79information. html, 1979.
[24]
Y. Yang. An evaluation of statistical approaches to text categorization. Information retrieval, 1(1-2):69--90, 1999.

Cited By

View all
  • (2019)Towards a Portable SLU System Applied to MSA and Low-resourced Algerian Dialects10.1007/978-3-030-14118-9_58(576-585)Online publication date: 17-Mar-2019

Index Terms

  1. A new Automatic approach for Understanding the Spontaneous Utterance in Human-Machine Dialogue based on Automatic Text Categorization

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image ACM Other conferences
        IPAC '15: Proceedings of the International Conference on Intelligent Information Processing, Security and Advanced Communication
        November 2015
        495 pages
        ISBN:9781450334587
        DOI:10.1145/2816839
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 23 November 2015

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Communication
        2. Human-Machine dialog
        3. Text Classification
        4. Thematic
        5. Understanding
        6. Utterance

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Conference

        IPAC '15

        Acceptance Rates

        Overall Acceptance Rate 87 of 367 submissions, 24%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 07 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2019)Towards a Portable SLU System Applied to MSA and Low-resourced Algerian Dialects10.1007/978-3-030-14118-9_58(576-585)Online publication date: 17-Mar-2019

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media