Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2810133.2810141acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article

Knowledge-Driven Video Information Retrieval with LOD: From Semi-Structured to Structured Video Metadata

Published: 22 October 2015 Publication History

Abstract

In parallel with the tremendously increasing number of video contents on the Web, many technical specifications and standards have been introduced to store technical details and describe the content of, and add subtitles to, online videos. Some of these specifications are based on unstructured data with limited machine-processability, data reuse, and interoperability, while others are XML-based, representing semi-structured data. While low-level video features can be derived automatically, high-level features are mainly related to a particular knowledge domain and heavily rely on human experience, judgment, and background. One of the approaches to solve this problem is to map standard, often semi-structured, vocabularies, such as that of MPEG-7, to machine-interpretable ontologies. Another approach is to introduce new multimedia ontologies. While video contents can be annotated efficiently with terms defined by structured LOD datasets, such as DBpedia, ontology standardization would be desired in the video production and distribution domains. This paper compares the state-of-the-art video annotations in terms of descriptor level and machine-readability, highlights the limitations of the different approaches, and makes suggestions towards standard video annotations.

References

[1]
Blöhdorn, S., Petridis, K., Saathoff, C., Simou, N., Tzouvaras, V., Avrithis, Y., Handschuh, S., Kompatsiaris, Y., Staab, S., and Strintzis, M. Semantic Annotation of Images and Videos for Multimedia Analysis. Lect Notes Comput Sc, 3532. 592--607. DOI= http://dx.doi.org/10.1007/11431053_40.
[2]
Boll, S., Klas, W., Sheth, A. Overview on using metadata to manage multimedia data. In: Sheth, A., Klas, W. (eds.) Multimedia data management: Using metadata to integrate and apply digital media. McGraw-Hill, New York, 1998, 3.
[3]
Choudhury, S., Breslin, J. G., and Passant, A. Enrichment and Ranking of the YouTube Tag Space and Integration with the Linked Data Cloud. Lect Notes Comput Sc, 5823. 747--762. DOI= http://dx.doi.org/10.1007/978-3-642-04930-9_47.
[4]
Consens, M. P., Hassanzadeh, O., and Teisanu, A. M., 2014. Linked Movie Database. Retrieved 12 June 2015, from http://www.linkedmdb.org.
[5]
Dasiopoulou, S., Tzouvaras, V., Kompatsiaris, I., and Strintzis, M. G. Enquiring MPEG-7 based multimedia ontologies. Multimed Tools Appl, 46. 331--370. DOI= http://dx.doi.org/10.1007/s11042-009-0387-4.
[6]
Dasiopoulou, S., Tzouvaras, V., Kompatsiaris, I., and Strintzis, M. Capturing MPEG-7 semantics. In 2nd International conference on metadata and semantics, (Corfu, Greece, 2007).
[7]
Adams, G. (ed.), Dolan, M., Freed, G., Hayes, S., Hodge, E., Kirby, D., Michel, T., Singer, D. Timed Text Markup Language 1. Retrieved 12 June 2015, from World Wide Web Consortium: http://www.w3.org/TR/ttaf1-dfxp/.
[8]
ETSI, 2015. TV Anytime. Retrieved 12 June 2015, from European Telecommunications Standards Institute: http://www.etsi.org/technologies-clusters/technologies/broadcast/tv-anytime.
[9]
García, R. and Celma, O. Semantic Integration and Retrieval of Multimedia Metadata. In 5th Int. Workshop on Knowledge Markup and Semantic Annotation, (Galway, Ireland, 2005).
[10]
Gómez-Romero, J., Patricio, M. A., García, J., and Molina, J. M. Ontology-based context representation and reasoning for object tracking and scene interpretation in video. Expert Syst Appl, 38(6). 7494--7510. DOI= http://dx.doi.org/10.1016/j.eswa.2010.12.118.
[11]
Hunter, J. Adding Multimedia to the Semantic Web - Building an MPEG-7 Ontology. In 1st International Semantic Web Working Symposium, (Stanford, USA, 2001), 261--281.
[12]
IPTC, 2015. NewsML-G2. Retrieved 12 June 2015, from International Press Telecommunications Council: https://iptc.org/standards/newsml-g2/.
[13]
Isaac, A. and Troncy, R. Designing and using an Audio-Visual Description Core Ontology. Workshop on Core Ontologies in Ontology Engineering, (Northamptonshire, UK, 2004).
[14]
ISO, 2013. MPEG-7. ISO/IEC 15938. Retrieved 12 June 2015, from International Organization for Standardization: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=34230.
[15]
ISO, 2013. MPEG-21. ISO/IEC 21000. Retrieved 12 June 2015, from International Organization for Standardization: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=35367.
[16]
Oberle, D., Ankolekar, A., Hitzler, P., Cimiano, P., Sintek, M., Kiesel, M., Mougouie, B., Baumann, S., Vembu, S., and Romanelli, M. DOLCE ergo SUMO: on foundational and domain models in the SmartWeb integrated ontology (SWIntO). J Web Semantics, 5(3). 156--174. DOI= http://dx.doi.org/10.1016/j.websem.2007.06.002.
[17]
Sikos, L. F. Advanced (X)HTML5 metadata and semantics for Web 3.0 videos. DESIDOC Libr Inf Technol, 31(4). 247--252. DOI= http://dx.doi.org/10.14429/djlit.31.4.1105.
[18]
Sikos, L. F. Mastering Structured Data on the Semantic Web: From HTML5 Microdata to Linked Open Data. Apress Media, New York, 2015.
[19]
Sikos, L. F., 2015. VidOnt: The Video Production and Broadcasting Ontology. Retrieved 12 June 2015, from http://vidont.org.
[20]
Solla, A. G. and Bovino, R. G. S. TV-Anytime: Paving the Way for Personalized TV. Springer Berlin Heidelberg, Berlin, 2013. DOI= http://dx.doi.org/10.1007/978-3-642-36766-3.
[21]
Suárez-Figueroa, M. C., Atemezing, G. A., and Corcho, O. The landscape of multimedia ontologies in the last decade. Multimed Tools Appl, 62(2). 377--399. DOI= http://dx.doi.org/10.1007/s11042-011-0905-z.
[22]
Tsinaraki, C., Polydoros, P., Moumoutzis, N., and Christodoulakis, S. Integration of OWL ontologies in MPEG-7 and TV-Anytime compliant Semantic Indexing. Lect Notes Comput Sc, 3084. 398--413. DOI= http://dx.doi.org/10.1007/978-3-540-25975-6_29.

Cited By

View all
  • (2022)Semiotic and Thematic Process for Audiovisual Documents DescriptionInternational Journal of Intelligent Information Technologies10.4018/IJIIT.29623918:1(1-24)Online publication date: Jan-2022
  • (2022)A study on video semantics; overview, challenges, and applicationsMultimedia Tools and Applications10.1007/s11042-021-11722-1Online publication date: 19-Jan-2022
  • (2021)Video representation and suspicious event detection using semantic technologiesSemantic Web10.3233/SW-20039312:3(467-491)Online publication date: 1-Jan-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ESAIR '15: Proceedings of the Eighth Workshop on Exploiting Semantic Annotations in Information Retrieval
October 2015
62 pages
ISBN:9781450337908
DOI:10.1145/2810133
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 October 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. linked open data
  2. mpeg-7
  3. ontology
  4. video annotation

Qualifiers

  • Research-article

Conference

CIKM'15
Sponsor:

Acceptance Rates

ESAIR '15 Paper Acceptance Rate 10 of 19 submissions, 53%;
Overall Acceptance Rate 35 of 55 submissions, 64%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)1
Reflects downloads up to 18 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Semiotic and Thematic Process for Audiovisual Documents DescriptionInternational Journal of Intelligent Information Technologies10.4018/IJIIT.29623918:1(1-24)Online publication date: Jan-2022
  • (2022)A study on video semantics; overview, challenges, and applicationsMultimedia Tools and Applications10.1007/s11042-021-11722-1Online publication date: 19-Jan-2022
  • (2021)Video representation and suspicious event detection using semantic technologiesSemantic Web10.3233/SW-20039312:3(467-491)Online publication date: 1-Jan-2021
  • (2020)A survey on description and modeling of audiovisual documentsMultimedia Tools and Applications10.1007/s11042-020-09589-9Online publication date: 15-Aug-2020
  • (2019)Supporting Soccer Analytics through HyperKnowledge Specifications2019 Second International Conference on Artificial Intelligence for Industries (AI4I)10.1109/AI4I46381.2019.00012(13-16)Online publication date: Sep-2019
  • (2019)A semantic parliamentary multimedia approach for retrieval of video clips with content understandingMultimedia Systems10.1007/s00530-019-00610-225:4(337-354)Online publication date: 1-Aug-2019
  • (2019)V4Ann: Representation and Interlinking of Atom-Based Annotations of Digital ContentSemantic Systems. The Power of AI and Knowledge Graphs10.1007/978-3-030-33220-4_10(124-139)Online publication date: 4-Nov-2019
  • (2018)On the Current State of Linked Open DataInternational Journal on Semantic Web & Information Systems10.4018/IJSWIS.201810010614:4(110-128)Online publication date: 1-Oct-2018
  • (2018)VidOnt: a core reference ontology for reasoning over video scenesJournal of Information and Telecommunication10.1080/24751839.2018.14376962:2(192-204)Online publication date: 21-Feb-2018
  • (2018)Ontology-Based Structured Video Annotation for Content-Based Video Retrieval via Spatiotemporal ReasoningBridging the Semantic Gap in Image and Video Analysis10.1007/978-3-319-73891-8_6(97-122)Online publication date: 21-Feb-2018
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media