Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2806416.2806480acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Ranking Entities for Web Queries Through Text and Knowledge

Published: 17 October 2015 Publication History

Abstract

When humans explain complex topics, they naturally talk about involved entities, such as people, locations, or events. In this paper, we aim at automating this process by retrieving and ranking entities that are relevant to understand free-text web-style queries like Argentine British relations, which typically demand a set of heterogeneous entities with no specific target type like, for instance, Falklands_-War} or Margaret-_Thatcher, as answer. Standard approaches to entity retrieval rely purely on features from the knowledge base. We approach the problem from the opposite direction, namely by analyzing web documents that are found to be query-relevant. Our approach hinges on entity linking technology that identifies entity mentions and links them to a knowledge base like Wikipedia. We use a learning-to-rank approach and study different features that use documents, entity mentions, and knowledge base entities -- thus bridging document and entity retrieval. Since established benchmarks for this problem do not exist, we use TREC test collections for document ranking and collect custom relevance judgments for entities. Experiments on TREC Robust04 and TREC Web13/14 data show that: i) single entity features, like the frequency of occurrence within the top-ranke documents, or the query retrieval score against a knowledge base, perform generally well; ii) the best overall performance is achieved when combining different features that relate an entity to the query, its document mentions, and its knowledge base representation.

References

[1]
N. Balasubramanian and S. Cucerzan. Beyond ranked lists in web search: Aggregating web content into topic pages. International Journal of Semantic Computing, 4(4):509--534, 2010.
[2]
K. Balog, A. P. de Vries, P. Serdyukov, P. Thomas, and T. Westerveld. Overview of the TREC 2009 entity track. In Proc. of TREC-09, 2010.
[3]
C. Biemann and M. Riedl. Text: Now in 2D! A framework for lexical expansion with contextual similarity. Journal of Language Modelling, 1:55--95, 2013.
[4]
C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann. DBpedia -- A Crystallization Point for the Web of Data. Journal of Web Semantics, 7(3), 2009.
[5]
S. Bloehdorn, R. Basili, M. Cammisa, and A. Moschitti. Semantic kernels for text classification based on topological measures of feature similarity. In Proc. of ICDM'06, pages 808--812, 2006.
[6]
M. Ciglan, K. Nørvåg, and L. Hluchý. The SemSets model for ad-hoc semantic list search. In Proc. of WWW'12, pages 131--140, 2012.
[7]
J. Dalton and L. Dietz. A neighborhood relevance model for entity linking. In Proc. of OAIR-13, pages 149--156, 2013.
[8]
J. Dalton, L. Dietz, and J. Allan. Entity query feature expansion using knowledge base links. In Proc. of SIGIR-14, pages 365--374, 2014.
[9]
N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins, P. Bohannon, S. Keerthi, and S. Merugu. A web of concepts. In Proc. of PODS '09, pages 1--12, 2009.
[10]
G. Demartini, C. S. Firan, T. Iofciu, R. Krestel, and W. Nejdl. Why finding entities in Wikipedia is difficult, sometimes. Information Retrieval, 13(5):534--567, 2010.
[11]
G. Demartini, T. Iofciu, and A. P. de Vries. Overview of the INEX 2009 entity ranking track. In Proc. of INEX, pages 254--264, 2009.
[12]
L. Dietz, M. Schuhmacher, and S. Ponzetto. Queripidia: Query-specific Wikipedia construction. In Proc. of AKBC-14, 2014.
[13]
J. Dunietz and D. Gillick. A new entity salience task with millions of training examples. In Proc. of EACL-14, pages 205--209, 2014.
[14]
O. Egozi, S. Markovitch, and E. Gabrilovich. Concept-based information retrieval using Explicit Semantic Analysis. ACM Transactions on Information Systems, 29(2):8:1--8:34, 2011.
[15]
S. Elbassuoni, M. Ramanath, R. Schenkel, M. Sydow, and G. Weikum. Language-model-based ranking for queries on RDF-graphs. In Proc. of CIKM-09, pages 977--986, 2009.
[16]
P. Ferragina and U. Scaiella. Fast and accurate annotation of short texts with Wikipedia pages. IEEE Software, 29(1):70--75, 2012.
[17]
E. Gabrilovich, M. Ringgaard, and A. Subramanya. Facc1: Freebase annotation of ClueWeb corpora, version 1, 2013.
[18]
R. Gupta, A. Halevy, X. Wang, S. Whang, and F. Wu. Biperpedia: An ontology for search applications. In Proc. of PVLDB-14, pages 505--516, 2014.
[19]
S. Gurajada, J. Kamps, A. Mishra, R. Schenkel, M. Theobald, and Q. Wang. Overview of the INEX 2013 linked data track. In Working Notes for CLEF 2013, 2013.
[20]
J. Hoffart, Y. Altun, and G. Weikum. Discovering emerging entities with ambiguous names. In Proc. of WWW-14, pages 385--396, 2014.
[21]
J. Hoffart, D. Milchevski, and G. Weikum. STICS: Searching with Strings, Things, and Cats. In Proc. of SIGIR-14, pages 1247--1248, 2014.
[22]
E. Hovy, R. Navigli, and S. P. Ponzetto. Collaboratively built semi-structured content and Artificial Intelligence: The story so far. Artificial Intelligence, 194:2--27, 2013.
[23]
K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. In Proc. of SIGIR-00, pages 41--48, 2000.
[24]
T. Joachims. Optimizing search engines using clickthrough data. In Proc. of SIGKDD-02, pages 133--142, 2002.
[25]
T. Joachims. Training linear SVMs in linear time. In Proc. of SIGKDD-06, pages 217--226, 2006.
[26]
R. Kaptein and J. Kamps. Exploiting the category structure of Wikipedia for entity ranking. Artificial Intelligence, 194:111--129, 2013.
[27]
R. Kaptein, P. Serdyukov, A. P. de Vries, and J. Kamps. Entity ranking using Wikipedia as a pivot. In Proc. of CIKM-10, pages 69--78, 2010.
[28]
V. I. Levenshtein. Binary codes capable of correcting spurious insertions and deletions of ones. Problems of Information Transmission, 1:8--17, 1965.
[29]
T.-Y. Liu. Learning to rank for information retrieval. Springer-Verlag, Berlin, 2011.
[30]
D. Metzler and W. Bruce Croft. Linear feature-based models for information retrieval. Information Retrieval, 10(3):257--274, 2007.
[31]
D. Metzler and W. B. Croft. A markov random field model for term dependencies. In Proc. of SIGIR-05, pages 472--479, 2005.
[32]
J. Pehcevski, A.-M. Vercoustre, and J. A. Thom. Exploiting locality of Wikipedia links in entity ranking. In Proc. of ECIR-08, pages 258--269, 2008.
[33]
J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors for word representation. In Proc. of EMNLP-2014, pages 1532--1543, 2014.
[34]
J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object retrieval in the web of data. In Proc. of WWW-10, pages 771--780, 2010.
[35]
H. Raviv, D. Carmel, and O. Kurland. A ranking framework for entity oriented search using markov random fields. In Proc. of JIWES '12, pages 1--6, 2012.
[36]
M. Schuhmacher and S. P. Ponzetto. Knowledge-based graph document modeling. In Proc. of WSDM-14, pages 543--552, 2014.
[37]
M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning to rank answers to non-factoid questions from web collections. Computational Linguistics, 37(2):351--383, 2011.
[38]
A. Tonon, G. Demartini, and P. Cudré-Mauroux. Combining inverted indices and structured search for ad-hoc object retrieval. In Proc. of SIGIR-12, pages 125--134. ACM, 2012.
[39]
C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo, D. Gerber, and P. Cimiano. Template-based question answering over RDF data. In Proc. of WWW-12, pages 639--648, 2012.
[40]
E. M. Voorhees. The TREC robust retrieval track. In ACM SIGIR Forum, volume 39, pages 11--20, 2005.
[41]
E. M. Voorhees and D. K. Harman. TREC: Experiment and Evaluation in Information Retrieval. The MIT Press, 2005.
[42]
W. Wu, H. Li, H. Wang, and K. Zhu. Probase: A probabilistic taxonomy for text understanding. In Proc. of SIGMOD-12, pages 481--492, 2012.
[43]
N. Zhiltsov and E. Agichtein. Improving entity search over linked data by modeling latent semantics. In Proc. of CIKM-13, pages 1253--1256, 2013.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
CIKM '15: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management
October 2015
1998 pages
ISBN:9781450337946
DOI:10.1145/2806416
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 October 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. entities
  2. entity ranking
  3. information retrieval
  4. knowledge bases

Qualifiers

  • Research-article

Funding Sources

  • Deutsche Forschungsgemeinschaft
  • Amazon
  • MWK Baden-Württemberg

Conference

CIKM'15
Sponsor:

Acceptance Rates

CIKM '15 Paper Acceptance Rate 165 of 646 submissions, 26%;
Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

Upcoming Conference

CIKM '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)1
Reflects downloads up to 16 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)DREQ: Document Re-ranking Using Entity-Based Query UnderstandingAdvances in Information Retrieval10.1007/978-3-031-56027-9_13(210-229)Online publication date: 24-Mar-2024
  • (2023)A Purely Entity-Based Semantic Search Approach for Document RetrievalApplied Sciences10.3390/app13181028513:18(10285)Online publication date: 14-Sep-2023
  • (2023)A three-dimensional model of semantic search: queries, resources, and resultsPROBLEMS IN PROGRAMMING10.15407/pp2023.04.039(39-55)Online publication date: Dec-2023
  • (2023)GRAFS: Graphical Faceted Search System to Support Conceptual Understanding in Exploratory SearchACM Transactions on Interactive Intelligent Systems10.1145/358831913:2(1-36)Online publication date: 31-Mar-2023
  • (2023)Entity Embeddings for Entity Ranking: A Replicability StudyAdvances in Information Retrieval10.1007/978-3-031-28241-6_8(117-131)Online publication date: 2-Apr-2023
  • (2022)Predicting Guiding Entities for Entity Aspect LinkingProceedings of the 31st ACM International Conference on Information & Knowledge Management10.1145/3511808.3557671(3848-3852)Online publication date: 17-Oct-2022
  • (2022)BERT-ERProceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3477495.3531944(1466-1477)Online publication date: 6-Jul-2022
  • (2022)Legal Information Retrieval systemsInformation Systems10.1016/j.is.2021.101967106:COnline publication date: 12-May-2022
  • (2022)An Entity-Oriented Approach for Answering Topical Information NeedsAdvances in Information Retrieval10.1007/978-3-030-99739-7_57(463-472)Online publication date: 10-Apr-2022
  • (2021)Extraction of Effective Textual and Semantic Features in Learning to Rank for Web Document RetrievalIranian Journal of Information Processing and Management10.52547/jipm.36.4.108136:4(1081-1112)Online publication date: 1-Jul-2021
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media