Nothing Special   »   [go: up one dir, main page]

skip to main content
article
Free access

Statistical independence properties of inversive pseudorandom vectors over parts of the period

Published: 01 April 1998 Publication History

Abstract

This article deals with the inversive method for generating uniform pseudorandom vectors. Statistical independence properties of the generated pseudorandom vector sequences over parts of the period are considered based on the discrete discrepancy of corresponding point sets. An upper bound for the average value of these discrete discrepancies is established.

References

[1]
EICHENAUER, J. AND LEHN, J. 1986. A non-linear congruential pseudo random number generator. Statist. Papers 27, 315-326.
[2]
EICHENAUER-HERRMANN, J. 1991. Inversive congruential pseudorandom numbers avoid the planes. Math. Comput. 56, 297-301.
[3]
EICHENAUER-HERRMANN, g. 1992. Inversive congruential pseudorandom numbers: A tutorial. Int. Statist. Rev. 60, 167-176.
[4]
EICHENAUER-HERRMANN, J. 1995. Pseudorandom number generation by nonlinear methods. Int. Statist. Rev. 63, 247-255.
[5]
EICHENAUER-HERRMANN, g., HERRMANN, E., AND WEGENKITTL, S. 1998. A survey of quadratic and inversive congruential pseudorandom numbers. In Monte Carlo and Quasi-Monte Carlo Methods 1996, H. Niederreiter, P. Hellekalek, G. Larcher, and P. Zinterhof, Eds., Lecture Notes in Statistics, vol. 127, Springer, New York, 66-97.
[6]
EMMERICH, F. 1995. New methods in pseudorandom vector generation. In Proceedings of the First Salzburg Minisymposium on Pseudorandom Number Generation and Quasi-Monte Carlo Methods (Salzburg), P. Hellekalek, G. Larcher, and P. Zinterhof, Eds., Austrian Center for Parallel Computation, Technical Report Series, University of Vienna, 15-23.
[7]
EMMERICH, F. 1996. Pseudorandom number and vector generation by compound inversive methods. Doctoral Thesis, Darmstadt.
[8]
EMMERICH, F. AND MULLER-GRONBACH, T. 1997. A law of the iterated logarithm for discrete discrepancies and its applications to pseudorandom vector sequences. Statistics (to appear).
[9]
HELLEKALEK, P. 1995a. General discrepancy estimates III: The Erd6s-Turfin-Koksma inequality for the Haar function system. Monatsh. Math. 120, 25-45.
[10]
HELLEKALEK, P. 1995b. Inversive pseudorandom number generators: Concepts, results, and links. In Proceedings of the 1995 Winter Simulation Conference, C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman, Eds., IEEE Press, Piscataway, NJ, 255-262.
[11]
LIDL, R. AND NIEDERREITER, H. 1983. Finite Fields. Addison-Wesley, Reading, MA.
[12]
NIEDERREITER, H. 1977. Pseudo-random numbers and optimal coefficients. Adv. Math. 26, 99-181.
[13]
NIEDERREITER, H. 1991. Finite fields and their applications. In Contributions to General Algebra 7, D. Dorninger, G. Eigenthaler, H. K. Kaiser, and W. B. Mfiller, Eds., Teubner, Stuttgart, 135-144.
[14]
NIEDERREITER, H. 1992a. Nonlinear methods for pseudorandom number and vector generation. In Simulation and Optimization, G. Pflug and U. Dieter, Eds., Lecture Notes in Economics and Mathematical Systems, vol. 374, Springer, Berlin, 145-153.
[15]
NIEDERREITER, H. 1992b. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, PA.
[16]
NIEDERREITER, H. 1993a. Finite fields, pseudorandom numbers, and quasirandom points. In Finite Fields, Coding Theory, and Advances in Communications and Computing, G.L. Mullen and P. J.-S. Shiue, Eds., Marcel Dekker, New York, 375-394.
[17]
NIEDERREITER, H. 1993b. Pseudorandom numbers and quasirandom points. Z. Angew. Math. Mech. 73, T648-T652.
[18]
NIEDERREITER, H. 1994. Pseudorandom vector generation by the inversive method. ACM Trans. Model. Comput. Simul. 4, 191-212.
[19]
NIEDERREITER, H. 1995. New developments in uniform pseudorandom number and vector generation. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P. J.-S. Shiue, Eds., Lecture Notes in Statistics, vol. 106, Springer, New York, 87-120.

Cited By

View all
  • (2002)Average equidistribution and statistical independence properties of digital inversive pseudorandom numbers over parts of the periodMathematics of Computation10.1090/S0025-5718-01-01328-X71:238(781-791)Online publication date: 1-Apr-2002

Index Terms

  1. Statistical independence properties of inversive pseudorandom vectors over parts of the period

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Modeling and Computer Simulation
    ACM Transactions on Modeling and Computer Simulation  Volume 8, Issue 2
    Special issue on modeling and analysis of stochastic systems
    April 1998
    120 pages
    ISSN:1049-3301
    EISSN:1558-1195
    DOI:10.1145/280265
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 April 1998
    Published in TOMACS Volume 8, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. average statistical independence properties
    2. discrete discrepancy
    3. exponential sums
    4. inversive method
    5. uniform psudorandom vectors

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)48
    • Downloads (Last 6 weeks)12
    Reflects downloads up to 18 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2002)Average equidistribution and statistical independence properties of digital inversive pseudorandom numbers over parts of the periodMathematics of Computation10.1090/S0025-5718-01-01328-X71:238(781-791)Online publication date: 1-Apr-2002

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media