Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2769493.2769511acmotherconferencesArticle/Chapter ViewAbstractPublication PagespetraConference Proceedingsconference-collections
research-article

An intra-fraction markerless daily lung tumor localization algorithm for EPID images

Published: 01 July 2015 Publication History

Abstract

In this work we report an intra-fractional markerless algorithm that accurately detects lung tumors on mV projections within the beam's eye view, while minimizing harmful effects such as poor soft tissue resolution, global image distortion, image blurring and scattering due to intrafraction target motion and radiation scatter. First, we generate two sets of DRRs digitally reconstructed radiographs-background DRR without tumor and tumor only DRR from the 4D CT planning data after the tumor has been initially segmented out. Next, the composite DRR is generated by fusing the tumor DRR on the background. The composite DRR along with the matching mV projection are divided into a matrix of small tiles. The tile configuration is automatically set up such that the tumor always remains within the beam's-eye-view geometry on the composite DRR. In order to locate the tumor on the mV projection, the tumor DRR is fused at different locations on the background DRR while the tiles of the composite DRR are globally shifted. For each configuration, the composite DRR is matched with the corresponding mV projection. A simple NCC normalized cross correlation is used to compute the similarity between the composite DRR and corresponding mV projection tiles. Finally, the location of the lung tumor on the mV projection is identified based on the best match found.
The algorithm was successfully tested on a dynamic chest phantom at our institution. Approximately 5700 raw images over 12 gantry angles were tested and the tumor was accurately located on every mV projection. Although, the chest phantom was created to mimic the human chest anatomy with neighboring organs, tissues and bony structures, which introduced strong signals, the maximum error reported was less that 1.6 mm while the average error reported was less than 0.7 mm.

References

[1]
Anonymous International Commission on Radiation Units and Measurements (ICRU) - Prescribing, Recording and Reporting Photon Beam Therapy (Report 62). ().
[2]
Arslan, S., Yilmaz, A., Bayramgurler, B., Uzman, O., Nver, E. and Akkaya, E. CT-guided transthoracic fine needle aspiration of pulmonary lesions: accuracy and complications in 294 patients. Med. Sci. Monit., 8, 7 (Jul 2002), CR493-7. DOI=2596 {pii}.
[3]
Balter, J. M., Wright, J. N., Newell, L. J., Friemel, B., Dimmer, S., Cheng, Y., Wong, J., Vertatschitsch, E. and Mate, T. P. Accuracy of a wireless localization system for radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 61, 3 (Mar 1 2005), 933--937. DOI=S0360-3016(04)02839-1 {pii}.
[4]
Barnes, E. A., Murray, B. R., Robinson, D. M., Underwood, L. J., Hanson, J. and Roa, W. H. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int. J. Radiat. Oncol. Biol. Phys., 50, 4 (Jul 15 2001), 1091--1098. DOI=S0360-3016(01)01592-9 {pii}.
[5]
Berbeco, R. I., Hacker, F., Zatwarnicki, C., Park, S. J., Ionascu, D., O'Farrell, D. and Mamon, H. J. A novel method for estimating SBRT delivered dose with beam's-eye-view images. Med. Phys., 35, 7 (Jul 2008), 3225--3231.
[6]
Berbeco, R. I., Nishioka, S., Shirato, H. and Jiang, S. B. Residual motion of lung tumors in end-of-inhale respiratory gated radiotherapy based on external surrogates. Med. Phys., 33, 11 (Nov 2006), 4149--4156.
[7]
Berbeco, R. I., Hacker, F., Ionascu, D. and Mamon, H. J. Clinical Feasibility of Using an \EPID\ in cine Mode for Image-Guided Verification of Stereotactic Body Radiotherapy. International Journal of Radiation Oncology*Biology*Physics, 69, 1 (2007), 258. DOI=http://dx.doi.org/10.1016/j.ijrobp.2007.04.051".
[8]
Bergner, F., Berkus, T., Oelhafen, M., Kunz, P., Pa, T., Grimmer, R., Ritschl, L. and Kachelriess, M. An investigation of 4D cone-beam CT algorithms for slowly rotating scanners. Med. Phys., 37, 9 (Sep 2010), 5044--5053.
[9]
Comaniciu, D., Ramesh, V. and Meer, P. Kernel-based object tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25, 5 (2003), 564--577. DOI=10.1109/TPAMI.2003.1195991.
[10]
Ekberg, L., Holmberg, O., Wittgren, L., Bjelkengren, G. and Landberg, T. What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiother. Oncol., 48, 1 (Jul 1998), 71--77. DOI=S0167-8140(98)00046-2 {pii}.
[11]
Engelsman, M., Damen, E. M., De Jaeger, K., van Ingen, K. M. and Mijnheer, B. J. The effect of breathing and set-up errors on the cumulative dose to a lung tumor. Radiother. Oncol., 60, 1 (Jul 2001), 95--105. DOI=S0167814001003498 {pii}.
[12]
Geraghty, P. R., Kee, S. T., McFarlane, G., Razavi, M. K., Sze, D. Y. and Dake, M. D. CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology, 229, 2 (Nov 2003), 475--481. DOI=10.1148/radiol.2291020499 {doi}.
[13]
Gierga, D. P., Brewer, J., Sharp, G. C., Betke, M., Willett, C. G. and Chen, G. T. The correlation between internal and external markers for abdominal tumors: implications for respiratory gating. Int. J. Radiat. Oncol. Biol. Phys., 61, 5 (Apr 1 2005), 1551--1558. DOI=S0360-3016(04)03039-1 {pii}.
[14]
Glide-Hurst, C. K., Schwenker Smith, M., Ajlouni, M. and Chetty, I. J. Evaluation of two synchronized external surrogates for 4D CT sorting. J. Appl. Clin. Med. Phys., 14, 6 (Nov 4 2013), 4301. DOI=10.1120/jacmp.v14i6.4301 {doi}.
[15]
Ionascu, D., Jiang, S. B., Nishioka, S., Shirato, H. and Berbeco, R. I. Internal-external correlation investigations of respiratory induced motion of lung tumors. Med. Phys., 34, 10 (Oct 2007), 3893--3903.
[16]
Jaffray, D. A., Siewerdsen, J. H., Wong, J. W. and Martinez, A. A. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 53, 5 (Aug 1 2002), 1337--1349. DOI=S0360301602028845 {pii}.
[17]
Jiang, S. B. Radiotherapy of mobile tumors. Semin. Radiat. Oncol., 16, 4 (Oct 2006), 239--248. DOI=S1053-4296(06)00033-6 {pii}.
[18]
Keall, P. J., Kini, V. R., Vedam, S. S. and Mohan, R. Motion adaptive x-ray therapy: a feasibility study. Phys. Med. Biol., 46, 1 (Jan 2001), 1--10.
[19]
Keall, P. J., Mageras, G. S., Balter, J. M., Emery, R. S., Forster, K. M., Jiang, S. B., Kapatoes, J. M., Low, D. A., Murphy, M. J., Murray, B. R., Ramsey, C. R., Van Herk, M. B., Vedam, S. S., Wong, J. W. and Yorke, E. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med. Phys., 33, 10 (Oct 2006), 3874--3900.
[20]
Kontrisova, K., Stock, M., Dieckmann, K., Bogner, J., Potter, R. and Georg, D. Dosimetric comparison of stereotactic body radiotherapy in different respiration conditions: a modeling study. Radiother. Oncol., 81, 1 (Oct 2006), 97--104. DOI=S0167-8140(06)00392-6 {pii}.
[21]
Balasubramanian, A., Shamsuddin, R., Cheung, Y., Savant, A., Prabhakaran, Exploring Baseline Shift Prediction in Respiration Induced Tumor Motion. IEEE International Conference on Healthcare Informatics 2014 (ICHI 2014), Verona, Italy, September 2014. {pii}.
[22]
Kubo, H. D. and Hill, B. C. Respiration gated radiotherapy treatment: a technical study. Phys. Med. Biol., 41, 1 (Jan 1996), 83--91.
[23]
Lewis, J. H. and Jiang, S. B. A theoretical model for respiratory motion artifacts in free-breathing CT scans. Phys. Med. Biol., 54, 3 (Feb 7 2009), 745--755. DOI=10.1088/0031-9155/54/3/018 {doi}.
[24]
Lewis, J. H., Li, R., Watkins, W. T., Lawson, J. D., Segars, W. P., Cervino, L. I., Song, W. Y. and Jiang, S. B. Markerless lung tumor tracking and trajectory reconstruction using rotational cone-beam projections: a feasibility study. Phys. Med. Biol., 55, 9 (May 7 2010), 2505--2522. DOI=10.1088/0031-9155/55/9/006 {doi}.
[25]
Li, G., Citrin, D., Camphausen, K., Mueller, B., Burman, C., Mychalczak, B., Miller, R. W. and Song, Y. Advances in 4D medical imaging and 4D radiation therapy. Technol. Cancer. Res. Treat., 7, 1 (Feb 2008), 67--81. DOI=d=3032&c=4249&p=16393&do=detail {pii}.
[26]
Li, N., Zarepisheh, M., Uribe-Sanchez, A., Moore, K., Tian, Z., Zhen, X., Graves, Y. J., Gautier, Q., Mell, L., Zhou, L., Jia, X. and Jiang, S. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs. Phys. Med. Biol., 58, 24 (Dec 21 2013), 8725--8738. DOI=10.1088/0031-9155/58/24/8725 {doi}.
[27]
Balasubramanian, A., Kim, D., Cheung, Y, Sawant, A., and Prabhakaran, B. Analysis of Surface Motion Patterns Changes for Detecting Baseline Shifts in Respiratory Tumor Motion Data. 3rd Workshop on Data Mining for Medicine and Healthcare (DMMH), 14th SIAM International Conference on Data Mining (SDM 2014), Philadelphia, USA, April 2014.
[28]
Li, T., Xing, L., Munro, P., McGuinness, C., Chao, M., Yang, Y., Loo, B. and Koong, A. Four-dimensional cone-beam computed tomography using an on-board imager. Med. Phys., 33, 10 (Oct 2006), 3825--3833.
[29]
Mageras, G. S. and Yorke, E. Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. Semin. Radiat. Oncol., 14, 1 (2004), 65. DOI=http://dx.doi.org/10.1053/j.semradonc.2003.10.009".
[30]
Murphy, M. J. Tracking moving organs in real time. Semin. Radiat. Oncol., 14, 1 (Jan 2004), 91--100. DOI=S1053-4296(03)00086-9 {pii}.
[31]
Murray, B., Forster, K. and Timmerman, R. Frame-based immobilization and targeting for stereotactic body radiation therapy. Med. Dosim., 32, 2 (Summer 2007), 86--91. DOI=S0958-3947(07)00006-4 {pii}.
[32]
Nelson, C., Starkschall, G., Balter, P., Morice, R. C., Stevens, C. W. and Chang, J. Y. Assessment of lung tumor motion and setup uncertainties using implanted fiducials. Int. J. Radiat. Oncol. Biol. Phys., 67, 3 (Mar 1 2007), 915--923. DOI=S0360-3016(06)03361-X {pii}.
[33]
Pan, T., Lee, T. Y., Rietzel, E. and Chen, G. T. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med. Phys., 31, 2 (Feb 2004), 333--340.
[34]
Park, S. J., Ionascu, D., Hacker, F., Mamon, H. and Berbeco, R. Automatic marker detection and 3D position reconstruction using cine EPID images for SBRT verification. Med. Phys., 36, 10 (Oct 2009), 4536--4546.
[35]
Purdie, T. G., Moseley, D. J., Bissonnette, J. P., Sharpe, M. B., Franks, K., Bezjak, A. and Jaffray, D. A. Respiration correlated cone-beam computed tomography and 4DCT for evaluating target motion in Stereotactic Lung Radiation Therapy. Acta Oncol., 45, 7 (2006), 915--922. DOI=W158212612X7X6J3 {pii}.
[36]
Rottmann, J., Aristophanous, M., Chen, A., Court, L. and Berbeco, R. A multi-region algorithm for markerless beam's-eye view lung tumor tracking. Phys. Med. Biol., 55, 18 (Sep 21 2010), 5585--5598. DOI=10.1088/0031-9155/55/18/021 {doi}.
[37]
Rozario, T., Bereg, S. and Mao, W. A markerless tiling method for tracking daily lung tumor motion on imperfectly matched images. In Anonymous PETRA. ()., 2014, 27.
[38]
Russakoff, D. B., Rohlfing, T., Mori, K., Rueckert, D., Ho, A., Adler, J. R., Jr and Maurer, C. R., Jr. Fast generation of digitally reconstructed radiographs using attenuation fields with application to 2D-3D image registration. IEEE Trans. Med. Imaging, 24, 11 (Nov 2005), 1441--1454. DOI=10.1109/TMI.2005.856749 {doi}.
[39]
Seiler, P. G., Blattmann, H., Kirsch, S., Muench, R. K. and Schilling, C. A novel tracking technique for the continuous precise measurement of tumour positions in conformal radiotherapy. Phys. Med. Biol., 45, 9 (Sep 2000), N103--10.
[40]
Seppenwoolde, Y., Shirato, H., Kitamura, K., Shimizu, S., van Herk, M., Lebesque, J. V. and Miyasaka, K. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 53, 4 (Jul 15 2002), 822--834. DOI=S0360301602028031 {pii}.
[41]
Sharp, G. C., Jiang, S. B., Shimizu, S. and Shirato, H. Tracking errors in a prototype real-time tumour tracking system. Phys. Med. Biol., 49, 23 (Dec 7 2004), 5347--5356.
[42]
Sonke, J. J. and Belderbos, J. Adaptive radiotherapy for lung cancer. Semin. Radiat. Oncol., 20, 2 (Apr 2010), 94--106. DOI=10.1016/j.semradonc.2009.11.003 {doi}.
[43]
Stevens, C. W., Munden, R. F., Forster, K. M., Kelly, J. F., Liao, Z., Starkschall, G., Tucker, S. and Komaki, R. Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int. J. Radiat. Oncol. Biol. Phys., 51, 1 (Sep 1 2001), 62--68. DOI=S0360-3016(01)01621-2 {pii}.
[44]
Tang, X., Sharp, G. C. and Jiang, S. B. Fluoroscopic tracking of multiple implanted fiducial markers using multiple object tracking. Phys. Med. Biol., 52, 14 (Jul 21 2007), 4081--4098. DOI=S0031-9155(07)43574-6 {pii}.
[45]
Wang, J. and Gu, X. High-quality four-dimensional cone-beam CT by deforming prior images. Phys. Med. Biol., 58, 2 (Jan 21 2013), 231--246. DOI=10.1088/0031-9155/58/2/231 {doi}.
[46]
Wu, C., Jeraj, R., Olivera, G. H. and Mackie, T. R. Re-optimization in adaptive radiotherapy. Phys. Med. Biol., 47, 17 (2002), 3181.
[47]
Yan, D., Vicini, F., Wong, J. and Martinez, A. Adaptive radiation therapy. Phys. Med. Biol., 42, 1 (Jan 1997), 123--132.
[48]
Yang, Y., Zhong, Z., Guo, X., Wang, J., Anderson, J., Solberg, T. and Mao, W. A novel markerless technique to evaluate daily lung tumor motion based on conventional cone-beam CT projection data. Int. J. Radiat. Oncol. Biol. Phys., 82, 5 (Apr 1 2012), e749--56. DOI=10.1016/j.ijrobp.2011.11.035 {doi}.
[49]
Zhang, X., Homma, N., Ichiji, K., Abe, M., Sugita, N., Takai, Y., Narita, Y. and Yoshizawa, M. A kernel-based method for markerless tumor tracking in kV fluoroscopic images. Phys. Med. Biol., 59, 17 (Sep 7 2014), 4897--4911. DOI=10.1088/0031-9155/59/17/4897 {doi}.
[50]
Zuiderveld, K. Graphics Gems IV. In Heckbert, P. S. ed. Academic Press Professional, Inc, San Diego, CA, USA, 1994, 474--485.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
PETRA '15: Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments
July 2015
526 pages
ISBN:9781450334525
DOI:10.1145/2769493
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

  • NSF: National Science Foundation
  • University of Texas at Austin: University of Texas at Austin
  • Univ. of Piraeus: University of Piraeus
  • NCRS: Demokritos National Center for Scientific Research
  • Ionian: Ionian University, GREECE

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. CBCT
  2. DRR
  3. EPID systems
  4. beam's eye view
  5. healthcare informatics
  6. lung cancer
  7. lung tumor tracking
  8. mV projections
  9. motion-tracking
  10. radiotherapy
  11. tile-shifting
  12. tumor tracking

Qualifiers

  • Research-article

Funding Sources

  • Elektra

Conference

PETRA '15
Sponsor:
  • NSF
  • University of Texas at Austin
  • Univ. of Piraeus
  • NCRS
  • Ionian

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 58
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media