Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A buffer-based approach to rate adaptation: evidence from a large video streaming service

Published: 17 August 2014 Publication History

Abstract

Existing ABR algorithms face a significant challenge in estimating future capacity: capacity can vary widely over time, a phenomenon commonly observed in commercial services. In this work, we suggest an alternative approach: rather than presuming that capacity estimation is required, it is perhaps better to begin by using only the buffer, and then ask when capacity estimation is needed. We test the viability of this approach through a series of experiments spanning millions of real users in a commercial service. We start with a simple design which directly chooses the video rate based on the current buffer occupancy. Our own investigation reveals that capacity estimation is unnecessary in steady state; however using simple capacity estimation (based on immediate past throughput) is important during the startup phase, when the buffer itself is growing from empty. This approach allows us to reduce the rebuffer rate by 10-20% compared to Netflix's then-default ABR algorithm, while delivering a similar average video rate, and a higher video rate in steady state.

References

[1]
S. Akhshabi et al. An Experimental Evaluation of Rate Adaptation Algorithms in Adaptive Streaming over HTTP. In ACM MMSys, 2011.
[2]
S. Akhshabi et al. What Happens When HTTP Adaptive Streaming Players Compete for Bandwidth? In ACM NOSSDAV, 2012.
[3]
A. Balachandran et al. Analyzing the Potential Benefits of CDN Augmentation Strategies for Internet Video Workloads. In ACM IMC, October 2013.
[4]
A. Balachandran et al. Developing a Predictive Model of Quality of Experience for Internet Video. In ACM SIGCOMM, 2013.
[5]
L. D. Cicco et al. An Experimental Investigation of the Akamai Adaptive Video Streaming. In USAB, 2010.
[6]
L. D. Cicco et al. ELASTIC: a Client-side Controller for Dynamic Adaptive Streaming over HTTP (DASH). In IEEE Packet Video Workshop, 2013.
[7]
F. Dobrian et al. Understanding the Impact of Video Quality on User Engagement. In ACM SIGCOMM, 2011.
[8]
T.-Y. Huang et al. Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard. In ACM IMC, November 2012.
[9]
T.-Y. Huang et al. A Buffer-Based Approach to Video Rate Adaptation. Technical report, 2014. http://yuba.stanford.edu/~huangty/bba_report.pdf.
[10]
J. Jiang et al. Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive. In ACM CoNEXT, 2012.
[11]
S. S. Krishnan et al. Video Stream Quality Impacts Viewer Behavior: Inferring Causality Using Quasi-Experimental Designs. In ACM IMC, 2012.
[12]
Z. Li et al. Probe and adapt: Rate adaptation for http video streaming at scale. In http://arxiv.org/pdf/1305.0510.
[13]
X. Liu et al. A Case for a Coordinated Internet Video Control Plane. In ACM SIGCOMM, 2012.
[14]
Y. Liu et al. User Experience Modeling for DASH Video. In IEEE Packet Video Workshop, 2013.
[15]
R. Mok et al. QDASH: a QoE-aware DASH system. In ACM MMSys, 2012.
[16]
Sandvine: Global Internet Phenomena Report 2012 Q2. http://tinyurl.com/nyqyarq.
[17]
Sandvine: Global Internet Phenomena Report 2013 H2. http://tinyurl.com/nt5k5qw.
[18]
Netflix ISP Speed Index. http://ispspeedindex.netflix.com/.
[19]
H. Sundaram, W.-C. Feng, and N. Sebe. Flicker Effects in Adaptive Video Streaming to Handheld Devices. In ACM MM, November 2011.
[20]
G. Tian and Y. Liu. Towards Agile and Smooth Video Adaptation in Dynamic HTTP Streaming. In ACM CoNEXT, December 2012.
[21]
Private conversation with YouTube ABR team.

Cited By

View all
  • (2024)A User Allocation Method for DASH Multi-Servers Considering Coalition Structure Generation in Cooperative GameIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences10.1587/transfun.2023SSI0001E107.A:4(611-618)Online publication date: 1-Apr-2024
  • (2024)Quality and Transferred Data Based Video Bitrate Control Method for Web-ConferencingIEICE Transactions on Communications10.1587/transcom.2023EBP3079E107.B:1(272-285)Online publication date: 1-Jan-2024
  • (2024)BONES: Near-Optimal Neural-Enhanced Video StreamingProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/36560148:2(1-28)Online publication date: 29-May-2024
  • Show More Cited By

Index Terms

  1. A buffer-based approach to rate adaptation: evidence from a large video streaming service

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM SIGCOMM Computer Communication Review
      ACM SIGCOMM Computer Communication Review  Volume 44, Issue 4
      SIGCOMM'14
      October 2014
      672 pages
      ISSN:0146-4833
      DOI:10.1145/2740070
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 17 August 2014
      Published in SIGCOMM-CCR Volume 44, Issue 4

      Check for updates

      Author Tags

      1. http-based video streaming
      2. video rate adaptation algorithm

      Qualifiers

      • Research-article

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)881
      • Downloads (Last 6 weeks)157
      Reflects downloads up to 20 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)A User Allocation Method for DASH Multi-Servers Considering Coalition Structure Generation in Cooperative GameIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences10.1587/transfun.2023SSI0001E107.A:4(611-618)Online publication date: 1-Apr-2024
      • (2024)Quality and Transferred Data Based Video Bitrate Control Method for Web-ConferencingIEICE Transactions on Communications10.1587/transcom.2023EBP3079E107.B:1(272-285)Online publication date: 1-Jan-2024
      • (2024)BONES: Near-Optimal Neural-Enhanced Video StreamingProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/36560148:2(1-28)Online publication date: 29-May-2024
      • (2024)SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video StreamingProceedings of the ACM SIGCOMM 2024 Conference10.1145/3651890.3672260(613-644)Online publication date: 4-Aug-2024
      • (2024)FReD-ViQ: Fuzzy Reinforcement Learning Driven Adaptive Streaming Solution for Improved Video Quality of ExperienceIEEE Transactions on Network and Service Management10.1109/TNSM.2024.345001421:5(5532-5547)Online publication date: 1-Oct-2024
      • (2024)Adaptive Bitrate Algorithms via Deep Reinforcement Learning With Digital Twins Assisted TrajectoryIEEE Transactions on Network Science and Engineering10.1109/TNSE.2024.337645111:4(3522-3535)Online publication date: Jul-2024
      • (2024)Low-Latency Video Conferencing via Optimized Packet Routing and Reordering2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)10.1109/IWQoS61813.2024.10682858(1-10)Online publication date: 19-Jun-2024
      • (2024)GRadient sharing A3C for Adaptive Bitrate (GRAAB): A DRL Based Approach for Adaptive Video Streaming2024 International Conference on Information Networking (ICOIN)10.1109/ICOIN59985.2024.10572060(114-119)Online publication date: 17-Jan-2024
      • (2024)Quality of Experience in Video Streaming: Status Quo, Pitfalls, and Guidelines2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)10.1109/COMSNETS59351.2024.10427330(558-567)Online publication date: 3-Jan-2024
      • (2024)Tile-size aware bitrate allocation for adaptive 360$$^{\circ }$$ video streamingMultimedia Tools and Applications10.1007/s11042-024-19486-0Online publication date: 5-Jun-2024
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media