Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

SAX-PAC (Scalable And eXpressive PAcket Classification)

Published: 17 August 2014 Publication History

Abstract

Efficient packet classification is a core concern for network services. Traditional multi-field classification approaches, in both software and ternary content-addressable memory (TCAMs), entail tradeoffs between (memory) space and (lookup) time. TCAMs cannot efficiently represent range rules, a common class of classification rules confining values of packet fields to given ranges. The exponential space growth of TCAM entries relative to the number of fields is exacerbated when multiple fields contain ranges. In this work, we present a novel approach which identifies properties of many classifiers which can be implemented in linear space and with worst-case guaranteed logarithmic time \emph{and} allows the addition of more fields including range constraints without impacting space and time complexities. On real-life classifiers from Cisco Systems and additional classifiers from ClassBench (with real parameters), 90-95% of rules are thus handled, and the other 5-10% of rules can be stored in TCAM to be processed in parallel.

References

[1]
E. Allender, L. Hellerstein, P. McCabe, T. Pitassi, and M. E. Saks. Minimizing DNF formulas and AC0d circuits given a truth table. In IEEE Conference on Computational Complexity, 2006.
[2]
A. Bremler-Barr, D. Hay, and D. Hendler. Layered interval codes for TCAM-based classification. In IEEE Infocom, 2009.
[3]
A. Bremler-Barr and D. Hendler. Space-efficient TCAM-based classification using Gray coding. IEEE Trans. Computers, 61(1):18--30, 2012.
[4]
P. Chalermsook and J. Chuzhoy. Maximum independent set of rectangles. In SODA, pages 892--901, 2009.
[5]
Y.K. Chang, C.I. Lee, and C.C. Su. Multi-field range encoding for packet classification in TCAM. In IEEE Infocom Mini-Conference, 2011.
[6]
H. Che, Z. Wang, K. Zheng, and B. Liu. DRES: Dynamic range encoding scheme for TCAM coprocessors. IEEE Trans. Computers, 57(7):902--915, 2008.
[7]
ClassBench: A packet classification benchmark.newlinefootnotesize http://www.arl.wustl.edu/classbench/.
[8]
Configuring IP ACLs.footnotesize http://www.cisco.com/en/US/docs/switches/newline datacenter/sw/4_1/nx-os/security/configuration/guide/sec_ipacls.pdf.
[9]
S. Dharmapurikar, H. Song, J. S. Turner, and J. W. Lockwood. Fast packet classification using bloom filters. In ACM/IEEE ANCS, 2006.
[10]
U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634--652, 1998.
[11]
P. Gupta and N. McKeown. Classifying packets with hierarchical intelligent cuttings. IEEE Micro, 20(1):34--41, 2000.
[12]
N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the "one big switch" abstraction in software-defined networks. In CoNEXT, pages 13--24, 2013.
[13]
Y. Kanizo, D. Hay, and I. Keslassy. Optimal fast hashing. In IEEE Infocom, 2009.
[14]
Y. Kanizo, D. Hay, and I. Keslassy. Palette: Distributing tables in software-defined networks. In INFOCOM, pages 545--549, 2013.
[15]
A. Kesselman, K. Kogan, S. Nemzer, and M. Segal. Space and speed tradeoffs in TCAM hierarchical packet classification. J. Comput. Syst. Sci., 79(1):111--121, 2013.
[16]
S. Khot and R. Saket. Hardness of minimizing and learning DNF expressions. In IEEE FOCS, 2008.
[17]
J. M. Kleinberg and É. Tardos. Algorithm design. Addison-Wesley, 2006.
[18]
K. Kogan, S. I. Nikolenko, W. Culhane, P. Eugster, and E. Ruan. Towards efficient implementation of packet classifiers in sdn/openflow. In HotSDN, pages 153--154, 2013.
[19]
N. Lesh and M. Mitzenmacher. Bubblesearch: A simple heuristic for improving priority-based greedy algorithms. Inf. Process. Lett., 97(4):161--169, 2006.
[20]
A. X. Liu, C. R. Meiners, and Y. Zhou. All-match based complete redundancy removal for packet classifiers in TCAMs. In IEEE Infocom, 2008.
[21]
H. Liu. Efficient mapping of range classifier into Ternary-CAM. In IEEE Hot Interconnects, 2002.
[22]
Y. Ma and S. Banerjee. A smart pre-classifier to reduce power consumption of tcams for multi-dimensional packet classification. In SIGCOMM, pages 335--346, 2012.
[23]
C. R. Meiners, A. X. Liu, and E. Torng. Bit weaving: A non-prefix approach to compressing packet classifiers in TCAMs. IEEE/ACM Trans. Netw., 20(2):488--500, 2012.
[24]
Netlogic Microsystems. Content addressable memory.footnotesize http://www.netlogicmicro.com.
[25]
OpenFlow 1.3 specification, 2012.footnotesize http://www.openflow.org/ wk/index.php/OpenFlow\_1\_3\_proposal.
[26]
M. H. Overmars and A. Frank van der Stappen. Range searching and point location among fat objects. J. Algorithms, 21(3):629--656, 1996.
[27]
G. Rétvári, J. Tapolcai, A. Korösi, A. Majdán, and Z. Heszberger. Compressing ip forwarding tables: towards entropy bounds and beyond. In SIGCOMM, pages 111--122, 2013.
[28]
O. Rottenstreich, A. Berman, Y.l Cassuto, and I. Keslassy. Compression for fixed-width memories. In IEEE ISIT, 2013.
[29]
O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy. Exact worst-case TCAM rule expansion. IEEE Trans. Computers, 62(6):1127--1140, 2013.
[30]
O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Porat. On finding an optimal TCAM encoding scheme for packet classification. In IEEE Infocom, 2013.
[31]
O. Rottenstreich, M. Radan, Y. Cassuto, I. Keslassy, C. Arad, T. Mizrahi, Y. Revah, and A. Hassidim. Compressing forwarding tables for datacenter scalability. IEEE Journal on Selected Areas in Communications, 32(1):138--151, 2014.
[32]
S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification using multidimensional cutting. In ACM SIGCOMM, 2003.
[33]
M. Somasundaram. Memory and power efficient mechanism for fast table lookup.
[34]
H. Song and J. S. Turner. ABC: Adaptive binary cuttings for multidimensional packet classification. IEEE/ACM Trans. Netw., 21(1):98--109, 2013.
[35]
V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple space search. In SIGCOMM, 1999.
[36]
V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable layer four switching. In ACM SIGCOMM, 1998.
[37]
C. Umans. The minimum equivalent DNF problem and shortest implicants. J. Comput. Syst. Sci., 63(4):597--611, 2001.
[38]
B. Vamanan and T. N. Vijaykumar. Treecam: decoupling updates and lookups in packet classification. In CoNEXT, 2011.
[39]
B. Vamanan, G. Voskuilen, and T. N. Vijaykumar. EffiCuts: optimizing packet classification for memory and throughput. In ACM SIGCOMM, pages 207--218, 2010.
[40]
G. Varghese. Network Algorithmics: An Interdisciplinary Approach to Designing Fast Networked Devices. Morgan Kaufmann, 2005.
[41]
Z. Wang, H. Che, M. Kumar, and S. K. Das. CoPTUA: Consistent policy table update algorithm for TCAM without locking. IEEE Trans. Computers, 53(12):1602--1614, 2004.
[42]
R. Wei, Y. Xu, and H. J. Chao. Block permutations in Boolean space to minimize TCAM for packet classification. In IEEE Infocom Mini-Conference, 2012.
[43]
X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the aggregatability of router forwarding tables. In IEEE INFOCOM, 2010.

Cited By

View all

Index Terms

  1. SAX-PAC (Scalable And eXpressive PAcket Classification)

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM SIGCOMM Computer Communication Review
      ACM SIGCOMM Computer Communication Review  Volume 44, Issue 4
      SIGCOMM'14
      October 2014
      672 pages
      ISSN:0146-4833
      DOI:10.1145/2740070
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 17 August 2014
      Published in SIGCOMM-CCR Volume 44, Issue 4

      Check for updates

      Author Tags

      1. TCAM
      2. packet classification

      Qualifiers

      • Research-article

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)126
      • Downloads (Last 6 weeks)21
      Reflects downloads up to 12 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)MultiSplit: An Efficient Algorithm for Packet Classification with Equivalent PriorityElectronics10.3390/electronics1315296713:15(2967)Online publication date: 27-Jul-2024
      • (2024)A neural gas network-based scheme for SDN many-field packet classificationThe Journal of Supercomputing10.1007/s11227-023-05564-x80:2(2601-2632)Online publication date: 1-Jan-2024
      • (2023)TCAM-based packet classification for many-field rules of SDNsComputer Communications10.1016/j.comcom.2023.03.001203(89-98)Online publication date: Apr-2023
      • (2022)An Observation of Packet Classification: Most Rules are at the TopIEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)10.1109/INFOCOMWKSHPS54753.2022.9798326(1-6)Online publication date: 2-May-2022
      • (2020)MsBV: A Memory Compression Scheme for Bit-Vector-Based Classification Lookup TablesIEEE Access10.1109/ACCESS.2020.29738098(38673-38681)Online publication date: 2020
      • (2019)Neural packet classificationProceedings of the ACM Special Interest Group on Data Communication10.1145/3341302.3342221(256-269)Online publication date: 19-Aug-2019
      • (2019)A Tale of Two (Flow) TablesProceedings of the 48th International Conference on Parallel Processing10.1145/3337821.3337896(1-10)Online publication date: 5-Aug-2019
      • (2019)TabTree: A TSS-assisted Bit-selecting Tree Scheme for Packet Classification with Balanced Rule Mapping2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)10.1109/ANCS.2019.8901884(1-8)Online publication date: Sep-2019
      • (2019)Clustering-based many-field packet classification in Software-Defined NetworkingJournal of Network and Computer Applications10.1016/j.jnca.2019.102428147:COnline publication date: 1-Dec-2019
      • (2018)Many-field packet classification using AMQ-R-treeJournal of High Speed Networks10.3233/JHS-18059224:3(219-241)Online publication date: 7-Jun-2018
      • Show More Cited By

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media