Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Solving the Weighted Stable Set Problem in Claw-Free Graphs via Decomposition

Published: 01 July 2014 Publication History

Abstract

We propose an algorithm for solving the maximum weighted stable set problem on claw-free graphs that runs in O(|V|(|E| + |V| log|V|))-time, drastically improving the previous best known complexity bound. This algorithm is based on a novel decomposition theorem for claw-free graphs, which is also introduced in the present article. Despite being weaker than the structural results for claw-free graphs given by Chudnovsky and Seymour [2005, 2008a, 2008b] our decomposition theorem is, on the other hand, algorithmic, that is, it is coupled with an O(|V||E|)-time algorithm that actually produces the decomposition.

References

[1]
R. Ahuja, T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, NJ.
[2]
F. Bonomo, G. Oriolo, and C. Snels. 2012. Minimum weighted clique cover on strip-composed perfect graphs. In Proceedings of the 38th International Workshop on Graph-Theoretic Concepts in Computer Science. Martin Charles Golumbic, Michal Stern, Avivit Levy, and Gila Morgenstern Eds., 22--33.
[3]
A. Brandstädt and F. F. Dragan. 2003. On linear and circular structure of (claw, net)-free graphs. Disc. Appl. Math. 129, 285--303.
[4]
A. Brandstädt and C. Hoáng. 2007. On clique separators, nearly chordal graphs, and the maximum weight stable set problem. Theoret. Comput. Sci. 389, 295--306.
[5]
M. Chudnovsky and P. Seymour. 2005. The structure of claw-free graphs. In Surveys in Combinatorics 2005, London Mathematics Society. Lecture Note Series 327, 153--171.
[6]
M. Chudnovsky and P. Seymour. 2008a. Claw-free graphs IV. Decomposition theorem. J. Combinat. Theory Ser B 98, 839--938.
[7]
M. Chudnovsky and P. Seymour. 2008b. Claw-free graphs V. Global structure. J. Combinat. Theory Ser B 98, 1373--1410.
[8]
M. Chudnovsky and P. Seymour. 2012. Claw-free graphs VII. Quasi-line graphs. J. Combinat. Theory Ser B 102, 1267--1294.
[9]
M. Chudnovsky, A. D. King, M. Plumettaz, and P. Seymour. 2013. A local strengthening of Reed’s ω, Δ, and χ conjecture for quasi-line graphs. SIAM J. Disc. Math. 27, 95--108.
[10]
A. Dubois, M. Rouire, and G. Stauffer (supervisor). 2011. Décomposition des graphes quasi-line et reduction du problem de couplage. Travail d’Etude et de Recherche à l’Université Bordeaux 2.
[11]
J. Edmonds. 1965. Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat. Bur. Stand. 69, 125--130.
[12]
F. Eisenbrand, G. Oriolo, G. Stauffer, and P. Ventura. 2008. The stable set polytope of quasi-line graphs. Combinatorica 28, 1, 45--67.
[13]
J. Fouquet. 1993. A strengthening of Ben Rebea’s lemma. J. Combinat. Theory 59, 35--40.
[14]
H. N. Gabow. 1990. Data structures for weighted matching and nearest common ancestors with linking. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms.
[15]
H. Hemper and D. Kratsch. 2002. On claw-free asteroidal triple-free graphs. Disc. Appl. Math. 121, 155--180.
[16]
D. Hermelin, M. Mnich, E. J. Van Leeuwen, and G. J. Woeginger. 2011. Domination when the stars are out. In Proceedings of ICALP 2011. A. Lodi, A. Panconesi and G. Rinaldi Eds., 462--473.
[17]
W. S. Kennedy and A. D. King. 2011. Finding a smallest odd hole in a claw-free graph using global structure. arXiv:1103.6222.
[18]
A. D. King. 2009. Claw-free graphs and two conjectures on ω, Δ, and χ. Ph.D. Thesis, McGill University.
[19]
A. D. King and B. Reed. 2008. Bounding χ in terms of ω and Δ for quasi-line graphs. J. Graph Theory 59, 215--228.
[20]
A. D. King and B. Reed. 2012. Claw-free graphs, skeletal graphs, and a stronger conjecture on ω, Δ, and χ. http://arxiv.org/abs/1212.3036.
[21]
A. D. King and B. Reed. 2013. Asymptotics of the chromatic number for quasi-line graphs. J. Graph Theory 73, 327--341.
[22]
T. Kloks, D. Kratsch, and H. Müller. 2000. Finding and counting small induced subgraphs efficiently. Inf. Process. Lett. 74, 3--4, 115--121.
[23]
J. Krausz. 1943. Démonstration nouvelle d’un théorème de Whitney sur les réseaux. Mat. Fix. Lapok 50, 75--85.
[24]
L. Lovász, and M. D. Plummer. 1986. Matching Theory. North Holland, Amsterdam.
[25]
G. J. Minty. 1980. On maximal independent sets of vertices in claw-free graphs. J. Combinat. Theory 28, 284--304.
[26]
D. Nakamura and A. Tamura. 2001. A revision of Minty’s algorithm for finding a maximum weighted stable set of a claw-free graph. J. Oper. Res. Soc. Japan 44, 2, 194--204.
[27]
P. Nobili and A. Sassano. 2011. A reduction algorithm for the weighted stable set problem in claw-free graphs. In Proceedings of the 10th Cologne-Twente Workshop, 223--226.
[28]
G. Oriolo, U. Pietropaoli, and G. Stauffer. 2008. A new algorithm for the maximum weighted stable set problem in claw-free graphs. In Proceedings of the 13th IPCO Conference. A. Lodi, A. Panconesi, and G. Rinaldi Eds., 77--96.
[29]
G. Oriolo, U. Pietropaoli, and G. Stauffer. 2012. On the recognition of fuzzy circular interval graphs. Disc. Math. 312, 8, 1426--1435.
[30]
W. R. Pulleyblank and F. B. Shepherd. 1993. Formulations for the stable set polytope of a claw-free graph. In Proceedings of the 3rd IPCO Conference. G. Rinaldi and L. Wolsey Eds., 267--279.
[31]
N. D. Roussopoulos. 1973. A max m,n algorithm for determining the graph H from its line graph G. Inf. Proc. Lett. 2, 4, 108--112.
[32]
N. Sbihi. 1980. Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile. Disc. Math. 29, 53--76.
[33]
A. Schrijver. 2003. Combinatorial optimization. Polyhedra and efficiency (3 volumes). Algorithms and Combinatorics 24. Springer, Berlin, Germany.

Cited By

View all

Index Terms

  1. Solving the Weighted Stable Set Problem in Claw-Free Graphs via Decomposition

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of the ACM
    Journal of the ACM  Volume 61, Issue 4
    July 2014
    259 pages
    ISSN:0004-5411
    EISSN:1557-735X
    DOI:10.1145/2660259
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 July 2014
    Accepted: 01 April 2014
    Revised: 01 January 2014
    Received: 01 August 2011
    Published in JACM Volume 61, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Stable sets
    2. claw-free graphs
    3. decomposition

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)16
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)The Structure of Hypergraphs Arising in Cellular Mobile Communication SystemsIEEE Transactions on Mobile Computing10.1109/TMC.2024.346017024:1(150-164)Online publication date: 1-Jan-2025
    • (2024)The total matching polytope of complete bipartite graphsOperations Research Letters10.1016/j.orl.2024.10714456(107144)Online publication date: Sep-2024
    • (2024)Counting kernels in directed graphs with arbitrary orientationsDiscrete Applied Mathematics10.1016/j.dam.2024.04.018355(62-73)Online publication date: Oct-2024
    • (2024)Getting linear time in graphs of bounded neighborhood diversityNetworks10.1002/net.22232Online publication date: 7-Jun-2024
    • (2023)Structured Hypergraphs in Cellular Mobile Communication SystemsProceedings of the 24th International Conference on Distributed Computing and Networking10.1145/3571306.3571335(188-196)Online publication date: 4-Jan-2023
    • (2023)Age of Information Minimizing Dynamic User Pairing in Downlink NOMA Systems2023 IEEE International Mediterranean Conference on Communications and Networking (MeditCom)10.1109/MeditCom58224.2023.10266627(145-150)Online publication date: 4-Sep-2023
    • (2023)Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphsDiscrete Applied Mathematics10.1016/j.dam.2023.01.012332(70-86)Online publication date: Jun-2023
    • (2023)A polytime preprocess algorithm for the maximum independent set problemOptimization Letters10.1007/s11590-023-02076-818:2(651-661)Online publication date: 24-Nov-2023
    • (2022)On the facets of stable set polytopes of circular interval graphsAnnals of Operations Research10.1007/s10479-021-04449-7312:2(1007-1029)Online publication date: 3-Mar-2022
    • (2022)Complexity and Polynomially Solvable Special Cases of QUBOThe Quadratic Unconstrained Binary Optimization Problem10.1007/978-3-031-04520-2_3(57-95)Online publication date: 9-Apr-2022
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media