Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2671188.2749366acmconferencesArticle/Chapter ViewAbstractPublication PagesicmrConference Proceedingsconference-collections
short-paper

Multiple Measurements and Joint Dimensionality Reduction for Large Scale Image Search with Short Vectors

Published: 22 June 2015 Publication History

Abstract

This paper addresses the construction of a short-vector (128D) image representation for large-scale image and particular object retrieval. In particular, the method of joint dimensionality reduction of multiple vocabularies is considered. We study a variety of vocabulary generation techniques: different k-means initializations, different descriptor transformations, different measurement regions for descriptor extraction. Our extensive evaluation shows that different combinations of vocabularies, each partitioning the descriptor space in a different yet complementary manner, results in a significant performance improvement, which exceeds the state-of-the-art.

References

[1]
R. Arandjelovic and A. Zisserman. Three things everyone should know to improve object retrieval. In Proc. CVPR, pages 2911--2918, 2012.
[2]
R. Arandjelović and A. Zisserman. All about VLAD. In Proc. CVPR, 2013.
[3]
O. Chum and J. Matas. Unsupervised discovery of co-occurrence in sparse high dimensional data. In Proc. CVPR, 2010.
[4]
O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall: Automatic query expansion with a generative feature model for object retrieval. In Proc. ICCV, 2007.
[5]
P. Comon. Independent component analysis, a new concept? Signal processing, 36(3):287--314, 1994.
[6]
H. Jégou and O. Chum. Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening. In Proc. ECCV, Firenze, Italy, Oct. 2012.
[7]
H. Jégou, M. Douze, and C. Schmid. On the burstiness of visual elements. In Proc. CVPR, 2009.
[8]
H. Jégou, M. Douze, and C. Schmid. Improving bag-of-features for large scale image search. IJCV, 87(3):316--336, 2010.
[9]
H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE PAMI, 33(1):117--128, 2011.
[10]
H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid. Aggregating local image descriptors into compact codes. IEEE PAMI, 34(9):1704--1716, 2012.
[11]
H. Jégou, A. Zisserman, et al. Triangulation embedding and democratic aggregation for image search. In Proc. CVPR, 2014.
[12]
D. G. Lowe. Distinctive image features from scale-invariant keypoints. Proc. ICCV, 60(2):91--110, 2004.
[13]
J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. In Proc. BMVC, volume 1, pages 384--393, 2002.
[14]
K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. IJCV, 1(60):63--86, 2004.
[15]
A. Mikulik, M. Perd'och, O. Chum, and J. Matas. Learning vocabularies over a fine quantization. IJCV, pages 1--13, 2012.
[16]
D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In Proc. CVPR, 2006.
[17]
A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 42(3):145--175, 2001.
[18]
M. Perdoch, O. Chum, and J. Matas. Efficient representation of local geometry for large scale object retrieval. In Proc. CVPR, 2009.
[19]
F. Perronnin, Y. Liu, J. Sanchez, and H. Poirier. Large-scale image retrieval with compressed fisher vectors. In Proc. CVPR, 2010.
[20]
J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In Proc. CVPR, 2007.
[21]
J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in largescale image databases. In Proc. CVPR, 2008.
[22]
F. Radenovic, H. Jegou, and O. Chum. Multiple Measurements and Joint Dimensionality Reduction for Large Scale Image Search with Short Vectors - Extended Version. ArXiv e-prints, Apr. 2015.
[23]
J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In Proc. ICCV, pages 1470--1477, 2003.
[24]
A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for recognition. In Proc. CVPR, pages 1--8. IEEE, 2008.
[25]
T. Tuytelaars and L. Van Gool. Wide baseline stereo matching based on local, affinely invariant regions. In Proc. BMVC, 2000.
[26]
Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proc. NIPS, pages 1753--1760, 2009.

Cited By

View all
  • (2024)AMES: Asymmetric and Memory-Efficient Similarity Estimation for Instance-Level RetrievalComputer Vision – ECCV 202410.1007/978-3-031-73202-7_18(307-325)Online publication date: 21-Nov-2024
  • (2022)MIR: A Benchmark for Molecular Image Retrival with a Cross-modal Pretraining Framework2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)10.1109/BIBM55620.2022.9995641(3902-3904)Online publication date: 6-Dec-2022
  • (2021)Evaluating Contrastive Models for Instance-based Image RetrievalProceedings of the 2021 International Conference on Multimedia Retrieval10.1145/3460426.3463585(471-475)Online publication date: 24-Aug-2021
  • Show More Cited By

Index Terms

  1. Multiple Measurements and Joint Dimensionality Reduction for Large Scale Image Search with Short Vectors

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ICMR '15: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval
    June 2015
    700 pages
    ISBN:9781450332743
    DOI:10.1145/2671188
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 June 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. image retrieval
    2. multiple vocabularies
    3. short codes

    Qualifiers

    • Short-paper

    Funding Sources

    Conference

    ICMR '15
    Sponsor:

    Acceptance Rates

    ICMR '15 Paper Acceptance Rate 48 of 127 submissions, 38%;
    Overall Acceptance Rate 254 of 830 submissions, 31%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)AMES: Asymmetric and Memory-Efficient Similarity Estimation for Instance-Level RetrievalComputer Vision – ECCV 202410.1007/978-3-031-73202-7_18(307-325)Online publication date: 21-Nov-2024
    • (2022)MIR: A Benchmark for Molecular Image Retrival with a Cross-modal Pretraining Framework2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)10.1109/BIBM55620.2022.9995641(3902-3904)Online publication date: 6-Dec-2022
    • (2021)Evaluating Contrastive Models for Instance-based Image RetrievalProceedings of the 2021 International Conference on Multimedia Retrieval10.1145/3460426.3463585(471-475)Online publication date: 24-Aug-2021
    • (2020)A hybrid late fusion-genetic algorithm approach for enhancing CBIR performanceMultimedia Tools and Applications10.1007/s11042-020-08825-679:27-28(20281-20298)Online publication date: 1-Jul-2020
    • (2019)Image Retrieval Based on Learning to Rank and Multiple LossISPRS International Journal of Geo-Information10.3390/ijgi80903938:9(393)Online publication date: 4-Sep-2019
    • (2019)Fine-Tuning CNN Image Retrieval with No Human AnnotationIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2018.284656641:7(1655-1668)Online publication date: 1-Jul-2019
    • (2019)BackgroundUnderstanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications10.1007/978-981-32-9166-9_2(27-51)Online publication date: 24-Aug-2019
    • (2018)Adding spatial distribution clue to aggregated vector in image retrievalEURASIP Journal on Image and Video Processing10.1186/s13640-018-0247-02018:1Online publication date: 7-Feb-2018
    • (2018)Near-Duplicate Image Retrieval Based on Multiple Features2018 IEEE Visual Communications and Image Processing (VCIP)10.1109/VCIP.2018.8698664(1-4)Online publication date: Dec-2018
    • (2018)SIFT Meets CNN: A Decade Survey of Instance RetrievalIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2017.270974940:5(1224-1244)Online publication date: 1-May-2018
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media