Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2661829.2661883acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Templated Search over Relational Databases

Published: 03 November 2014 Publication History

Abstract

Businesses and large organizations accumulate increasingly large amounts of customer interaction data. Analysis of such data holds great importance for tasks such as strategic planning and orchestration of sales/marketing campaigns. However, discovery and analysis over heterogeneous enterprise data can be challenging. Primary reasons for this are dispersed data repositories, requirements for schema knowledge, and difficulties in using complex user interfaces. As a solution to the above, we propose a TEmplated Search paradigm (TES) for exploring relational data that combines the advantages of keyword search interfaces with the expressive power of question-answering systems. The user starts typing a few keywords and TES proposes data exploration questions in real time. A key aspect of our approach is that the questions displayed are diverse to each other and optimally cover the space of possible questions for a given question-ranking framework. Efficient exact and provably approximate algorithms are presented. We show that the Templated Search paradigm renders the potentially complex underlying data sources intelligible and easily navigable. We support our claims with experimental results on real-world enterprise data.

References

[1]
S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-based search over relational databases. In Proc. ICDE, pages 5--16, 2002.
[2]
ApacheFoundation. Lucene/solr. http://lucene.apache.org/solr, 2013.
[3]
Z. Bao, B. Kimelfeld, and Y. Li. Automatic suggestion of query-rewrite rules for enterprise search. In Proc. SIGIR, pages 591--600, 2012.
[4]
G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching and browsing in databases using banks. In Proc. ICDE, pages 431--440, 2002.
[5]
S. Bhatia, D. Majumdar, and P. Mitra. Query suggestions in the absence of query logs. In Proc. SIGIR, pages 795--804, 2011.
[6]
J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proc. SIGIR, pages 335--336, 1998.
[7]
B. Chandra and M. M. Halldórsson. Approximation algorithms for dispersion problems. J. Algorithms, 38(2):438--465, Feb. 2001.
[8]
R. Chandrasekaran and A. Daughety. Location on Tree Networks: P-Centre and n-Dispersion Problems. Mathematics of Operations Research, 6(1):50--57, 1981.
[9]
E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton. Combining keyword search and forms for ad hoc querying of databases. In Proc. SIGMOD, pages 349--360, 2009.
[10]
M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu, T. Jackson, S. Kunnatur, S. Lassen, P. Pronin, S. Sankar, et al. Unicorn: A system for searching the social graph. Proc. VLDB, 6(11):1150--1161, 2013.
[11]
V. Dang and B. W. Croft. Term level search result diversification. In Proc. SIGIR, pages 603--612, 2013.
[12]
V. Dang and W. B. Croft. Diversity by proportionality: An election-based approach to search result diversification. In Proc. SIGIR, pages 65--74, 2012.
[13]
E. Demidova, X. Zhou, and W. Nejdl. Efficient query construction for large scale data. In Proc. SIGIR, pages 573--582, 2013.
[14]
M. Drosou and E. Pitoura. Search result diversification. SIGMOD Rec., 39(1):41--47, Sept. 2010.
[15]
M. Drosou and E. Pitoura. DisC diversity: Result diversification based on dissimilarity and coverage. Proc. VLDB, 6(1):13--24, 2012.
[16]
G. J. Fakas, Z. Cai, and N. Mamoulis. Size-l object summaries for relational keyword search. Proc. VLDB, 5(3):229--240, Nov. 2011.
[17]
S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In Proc. WWW, pages 381--390, 2009.
[18]
R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dispersion. Operations Research Letters, 21(3):133--137, 1997.
[19]
V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style keyword search over relational databases. In Proc. VLDB, pages 850--861, 2003.
[20]
V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword Search in Relational Databases. In Proc. VLDB, pages 670--681, 2002.
[21]
M. Jayapandian and H. V. Jagadish. Automated creation of a forms-based database query interface. In Proc. VLDB, pages 695--709, 2008.
[22]
M. Jayapandian and H. V. Jagadish. Expressive query specification through form customization. In Proc. EDBT, pages 416--427, 2008.
[23]
K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of information retrieval: development and comparative experiments - part 1. Inf. Process. Manage., 36(6):779--808, 2000.
[24]
B. Korte and D. Hausmann. An analysis of the greedy heuristic for independence systems. In P. H. B. Alspach and D. Miller, editors, Algorithmic Aspects of Combinatorics, volume 2 of Annals of Discrete Mathematics, pages 65--74. Elsevier, 1978.
[25]
Y. Lei, V. S. Uren, and E. Motta. SemSearch: A Search Engine for the Semantic Web. In Proc. EKAW, pages 238--245, 2006.
[26]
X. Li and M. Boucher. Under the hood: The natural language interface of graph search. http://goo.gl/bPlHb, 2013.
[27]
Y. Papakonstantinou, M. Petropoulos, and V. Vassalos. QURSED: querying and reporting semistructured data. In Proc. SIGMOD, pages 192--203, 2002.
[28]
A.-M. Popescu, O. Etzioni, and H. Kautz. Towards a theory of natural language interfaces to databases. In Proc. IUI, pages 149--157, 2003.
[29]
J. Pound, S. Paparizos, and P. Tsaparas. Facet discovery for structured web search: a query-log mining approach. In Proc. SIGMOD, pages 169--180, 2011.
[30]
S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms for dispersion problems. Operations Research, 42(2):pp. 299--310, 1994.
[31]
I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O'Reilly Media, Incorporated, 2013.
[32]
S. Sankar. Under the hood: Indexing and ranking in graph search. http://goo.gl/jHKCK, March 14 2013.
[33]
N. Sarkas, S. Paparizos, and P. Tsaparas. Structured annotations of web queries. In Proc. SIGMOD, pages 771--782, 2010.
[34]
S. Tata and G. M. Lohman. SQAK: doing more with keywords. In Proc. SIGMOD, pages 889--902, 2008.
[35]
A. Termehchy and M. Winslett. Keyword search for data-centric xml collections with long text fields. In Proc. EDBT, pages 537--548, 2010.
[36]
P. Wu, Y. Sismanis, and B. Reinwald. Towards keyword-driven analytical processing. In Proc. SIGMOD, pages 617--628, 2007.
[37]
X. Yang, C. M. Procopiuc, and D. Srivastava. Recommending join queries via query log analysis. In Proc. ICDE, pages 964--975, 2009.
[38]
W. Zheng, H. Fang, and C. Yao. Exploiting concept hierarchy for result diversification. In Proc. CIKM, pages 1844--1848, 2012.

Cited By

View all
  • (2017)ConteSaGProceedings of the 7th International Conference on Web Intelligence, Mining and Semantics10.1145/3102254.3102278(1-6)Online publication date: 19-Jun-2017

Index Terms

  1. Templated Search over Relational Databases

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CIKM '14: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management
    November 2014
    2152 pages
    ISBN:9781450325981
    DOI:10.1145/2661829
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 03 November 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. keyword search
    2. query recommendations

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    CIKM '14
    Sponsor:

    Acceptance Rates

    CIKM '14 Paper Acceptance Rate 175 of 838 submissions, 21%;
    Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

    Upcoming Conference

    CIKM '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 13 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2017)ConteSaGProceedings of the 7th International Conference on Web Intelligence, Mining and Semantics10.1145/3102254.3102278(1-6)Online publication date: 19-Jun-2017

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media