Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A framework for applying the principles of depth perception to information visualization

Published: 01 October 2013 Publication History

Abstract

During the visualization of 3D content, using the depth cues selectively to support the design goals and enabling a user to perceive the spatial relationships between the objects are important concerns. In this novel solution, we automate this process by proposing a framework that determines important depth cues for the input scene and the rendering methods to provide these cues. While determining the importance of the cues, we consider the user's tasks and the scene's spatial layout. The importance of each depth cue is calculated using a fuzzy logic--based decision system. Then, suitable rendering methods that provide the important cues are selected by performing a cost-profit analysis on the rendering costs of the methods and their contribution to depth perception. Possible cue conflicts are considered and handled in the system. We also provide formal experimental studies designed for several visualization tasks. A statistical analysis of the experiments verifies the success of our framework.

Supplementary Material

a19-yildiz-apndx.pdf (yildiz.zip)
Supplemental movie, appendix, image and software files for, A framework for applying the principles of depth perception to information visualization

References

[1]
Akenine-Moller, T., Haines, E., and Hoffman, N. 2008. Texturing. In Real-Time Rendering (3rd ed.). A. K. Peters, 147--200.
[2]
Brackstone, M. 2000. Examination of the use of fuzzy sets to describe relative speed perception. Ergonomics 43, 4, 528--542.
[3]
Bradshaw, M. F., Parton, A. D., and Glennerster, A. 2000. The task-dependent use of binocular disparity and motion parallax information. Vision Research 40, 27, 3725--3734.
[4]
Bulbul, A., Cipiloglu, Z., and Capin, T. 2010. A color-based face tracking algorithm for enhancing interaction with mobile devices. Visual Comput. 26, 5, 311--323.
[5]
Bunnel, M. 2004. Dynamic Ambient Occlusion and Indirect Lighting. Addison-Wesley.
[6]
Card, S. and Mackinlay, J. 1997. The structure of the information visualization design space. In Proceedings of the 1997 IEEE Symposium on Information Visualization (InfoVis'97). IEEE, 92--99.
[7]
Cipiloglu, Z., Bulbul, A., and Capin, T. 2010. A framework for enhancing depth perception in computer graphics. In Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization (APGV'10). ACM, New York, 141--148.
[8]
Cutting, J. E. and Vishton, P. M. 1995. Perception of Space and Motion. Handbook of Perception and Cognition (2nd ed.). Academic Press, 69--117.
[9]
Dodgson, N. A. 2005. Autostereoscopic 3D displays. Computer 38, 31--36.
[10]
Gershon, N. E. and Eick, S. G. 1997. Information visualization applications in the real world. IEEE Comp. Graph. Appl. 17, 4, 66--70.
[11]
Gooch, A., Gooch, B., Shirley, P., and Cohen, E. 1998. A non-photorealistic lighting model for automatic technical illustration. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'98). ACM, New York, 447--452.
[12]
Haeberli, P. and Akeley, K. 1990. The accumulation buffer: Hardware support for high-quality rendering. SIGGRAPH Comput. Graph. 24, 4, 309--318.
[13]
Hoffman, D., Girshick, A., Akeley, K., and Banks, M. 2008. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8, 3, 33.
[14]
Howard, I. and Rogers, B. 2008. Seeing in Depth. Oxford University Press.
[15]
Hubona, G. S., Wheeler, P. N., Shirah, G. W., and Brandt, M. 1999. The relative contributions of stereo, lighting, and background scenes in promoting 3D depth visualization. ACM Trans. Comput.-Hum. Interact. 6, 3, 214--242.
[16]
Keim, D. 2002. Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph. 8, 1, 1--8.
[17]
Kersten, D., Knill, D. C., Mamassian, P., and Bülthoff, I. 1996. Illusory motion from shadows. Nature 379, 6560, 31.
[18]
Kersten, M., Stewart, J., Troje, N. F., and Ellis, R. E. 2006. Enhancing depth perception in translucent volumes. IEEE Trans. Vis. Comput. Graph. 1117--1124.
[19]
Knill, D. C. 2005. Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception. J. Vis. 5, 2, 103--115.
[20]
Luft, T., Colditz, C., and Deussen, O. 2006. Image enhancement by unsharp masking the depth buffer. ACM Trans. Graph. 25, 3, 1206--1213.
[21]
Maloney, L. T. and Landy, M. S. 1989. A statistical framework for robust fusion of depth information. In Proceedings of SPIE Visual Communications and Image Processing IV. William A. Pearlman, Philadelphia, PA, 1154--1163.
[22]
Oruc, I., Maloney, T., and Landy, M. 2003. Weighted linear cue combination with possibly correlated error. Vision Res. 43, 2451--2468.
[23]
Robertson, G., Czerwinski, M., Larson, K., Robbins, D. C., Thiel, D., and van Dantzich, M. 1998. Data mountain: Using spatial memory for document management. In Proceedings of the 11th Annual ACM Symposium on User Interface Software and Technology (UIST'98). ACM, New York, 153--162.
[24]
Robertson, G., van Dantzich, M., Robbins, D., Czerwinski, M., Hinckley, K., Risden, K., Thiel, D., and Gorokhovsky, V. 2000. The task gallery: A 3D window manager. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'00). ACM, New York, 494--501.
[25]
Robertson, G. G., Mackinlay, J. D., and Card, S. K. 1991. Cone trees: Animated 3D visualizations of hierarchical information. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Reaching through Technology (CHI'91). ACM, New York, 189--194.
[26]
Ropinski, T., Steinicke, F., and Hinrichs, K. 2006. Visually supporting depth perception in angiography imaging. In A. Butz, B. Fisher, A. Krger, and P. Olivier, Eds., Smart Graphics, Lecture Notes in Computer Science Series, vol. 4073. Springer, Berlin, Germany, 93--104.
[27]
Rosenholtz, R., Li, Y., Mansfield, J., and Jin, Z. 2005. Feature congestion: A measure of display clutter. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'05). ACM, New York, 761--770.
[28]
Runkler, T. and Glesner, M. 1993. A set of axioms for defuzzification strategies towards a theory of rational defuzzification operators. In Proceedings of the 2nd International IEEE Fuzzy Systems Conference. IEEE, San Francisco, CA, 1161--1166.
[29]
Russell, J. 1997. How shall an emotion be called. In R. Plutchik and H. R. Conte, Eds., Circumplex Models of Personality and Emotions. American Psychological Association, Washington, DC, 205--220.
[30]
Schrater, P. R. and Kersten, D. 2000. How optimal depth cue integration depends on the task. Int. J. Comput. Vision 40, 73--91.
[31]
Sears, A. and Jacko, J. A. 2007. The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications. CRC Press.
[32]
Shirley, P. 2002. Fundamentals of Computer Graphics. A. K. Peters, Ltd.
[33]
Swain, C. T. 2009. Integration of monocular cues to improve depth perception. US Patent 6,157,733.
[34]
Tarini, M., Cignoni, P., and Montani, C. 2006. Ambient occlusion and edge cueing for enhancing real time molecular visualization. IEEE Trans. Vis. Comput. Graph. 12, 5, 1237--1244.
[35]
Trommershäuser, J. 2011. Ideal-observer models of cute integration. In J. Trommershäuser, K. Körding and M. S. Landy, Eds., Sensory Cue Integration. Oxford University Press, 5--29.
[36]
Wanger, L. R., Ferwerda, J. A., and Greenberg, D. A. 1992. Perceiving spatial relationships in computer-generated images. IEEE Comp. Graph. Appl. 12, 44--58.
[37]
Ware, C. 2004. Space perception and the display of data in space. In Information Visualization: Perception for Design. Elsevier, 259--296.
[38]
Ware, C. 2008. Getting the information: Visual space and time. Visual Thinking for Design. Morgan Kaufmann, 87--106.
[39]
Ware, C., Gobrecht, C., and Paton, M. 1998. Dynamic adjustment of stereo display parameters. IEEE Trans. Syst. Man Cybern. A, Syst. Humans 28, 1, 56--65.
[40]
Ware, C. and Mitchell, P. 2008. Visualizing graphs in three dimensions. ACM Trans. Appl. Percept. 5, 1, 1--15.
[41]
Weiskopf, D. and Ertl, T. 2002. A depth-cueing scheme based on linear transformations in tristimulus space. Tech. rep. TR--2002/08. Visualization and Interactive Systems Group, University of Stuttgart.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Applied Perception
ACM Transactions on Applied Perception  Volume 10, Issue 4
October 2013
190 pages
ISSN:1544-3558
EISSN:1544-3965
DOI:10.1145/2536764
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 October 2013
Accepted: 01 May 2013
Revised: 01 September 2012
Received: 01 February 2012
Published in TAP Volume 10, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Depth perception
  2. cue combination
  3. depth cues
  4. fuzzy logic
  5. information visualization

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 359
    Total Downloads
  • Downloads (Last 12 months)13
  • Downloads (Last 6 weeks)1
Reflects downloads up to 19 Nov 2024

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media