Abstract
Existing database systems employ an \textit{eager} transaction processing scheme---that is, upon receiving a transaction request, the system executes all the operations entailed in running the transaction (which typically includes reading database records, executing user-specified transaction logic, and logging updates and writes) before reporting to the client that the transaction has completed. We introduce a \textit{lazy} transaction execution engine, in which a transaction may be considered durably completed after only partial execution, while the bulk of its operations (notably all reads from the database and all execution of transaction logic) may be deferred until an arbitrary future time, such as when a user attempts to read some element of the transaction's write-set---all without modifying the semantics of the transaction or sacrificing ACID guarantees. Lazy transactions are processed deterministically, so that the final state of the database is guaranteed to be equivalent to what the state would have been had all transactions been executed eagerly.
Our prototype of a lazy transaction execution engine improves temporal locality when executing related transactions, reduces peak provisioning requirements by deferring more non-urgent work until off-peak load times, and reduces contention footprint of concurrent transactions. However, we find that certain queries suffer increased latency, and therefore lazy database systems may not be appropriate for read-latency sensitive applications.
We introduce a lazy transaction execution engine, in which a transaction may be considered durably completed after only partial execution, while the bulk of its operations (notably all reads from the database and all execution of transaction logic) may be deferred until an arbitrary future time, such as when a user attempts to read some element of the transaction's write-set---all without modifying the semantics of the transaction or sacrificing ACID guarantees. Lazy transactions are processed deterministically, so that the final state of the database is guaranteed to be equivalent to what the state would have been had all transactions been executed eagerly.
Our prototype of a lazy transaction execution engine improves temporal locality when executing related transactions, reduces peak provisioning requirements by deferring more non-urgent work until off-peak load times, and reduces contention footprint of concurrent transactions. However, we find that certain queries suffer increased latency, and therefore lazy database systems may not be appropriate for read-latency sensitive applications.