Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2488608.2488714acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

A new family of locally correctable codes based on degree-lifted algebraic geometry codes

Published: 01 June 2013 Publication History

Abstract

We describe new constructions of error correcting codes, obtained by "degree-lifting" a short algebraic geometry base-code of block-length q to a lifted-code of block-length qm, for arbitrary integer m. The construction generalizes the way degree-d, univariate polynomials evaluated over the q-element field (also known as Reed-Solomon codes) are "lifted" to degree-d, m-variate polynomials (Reed-Muller codes). A number of properties are established: The rate of the degree-lifted code is approximately a 1/m!-fraction of the rate of the base-code. The relative distance of the degree-lifted code is at least as large as that of the base-code. This is proved using a generalization of the Schwartz-Zippel Lemma to degree-lifted Algebraic-Geometry codes. [Local correction] If the base code is invariant under a group that is "close" to being doubly-transitive (in a precise manner defined later then the degree-lifted code is locally correctable with query complexity at most q2. The automorphisms of the base-code are crucially used to generate query-sets, abstracting the use of affine-lines in the local correction procedure of Reed-Muller codes. Taking a concrete illustrating example, we show that degree-lifted Hermitian codes form a family of locally correctable codes over an alphabet that is significantly smaller than that obtained by Reed-Muller codes of similar constant rate, message length, and distance.

References

[1]
N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing Reed-Muller codes. IEEE Transactions on Information Theory, 51(11):4032--4039, 2005.
[2]
S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM, 45(1):70--122, Jan. 1998.
[3]
S. Arora and M. Sudan. Improved low-degree testing and its applications. Combinatorica, 23(3):365--426, 2003.
[4]
L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polylogarithmic time. In STOC '91: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages 21--32, New York, NY, USA, 1991. ACM.
[5]
L. Babai, L. Fortnow, and C. Lund. Addendum to non-deterministic exponential time has two-prover interactive protocols. Computational Complexity, 2:374, 1992.
[6]
L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. Bpp has subexponential time simulations unless exptime has publishable proofs. Computational Complexity, 3:307--318, 1993.
[7]
L. Babai, A. Shpilka, and D. Stefankovic. Locally testable cyclic codes. In IEEE, editor, Proceedings: 44th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2003, 11--14 October 2003, Cambridge, Massachusetts, pages 116--125, pub-IEEE:adr, 2003. IEEE Computer Society Press.
[8]
D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science, STACS '90, pages 37--48. 1990.
[9]
A. Ben-Aroya, K. Efremenko, and A. Ta-Shma. Local list decoding with a constant number of queries. Electronic Colloquium on Computational Complexity (ECCC), 17:47, 2010.
[10]
A. Ben-Aroya and A. Ta-Shma. Constructing small-bias sets from algebraic-geometric codes. In FOCS, pages 191--197. IEEE Computer Society, 2009.
[11]
E. Ben-Sasson, E. Grigorescu, G. Maatouk, A. Shpilka, and M. Sudan. On sums of locally testable affine invariant properties. Electronic Colloquium on Computational Complexity (ECCC), 18:79, 2011.
[12]
E. Ben-Sasson, V. Guruswami, T. Kaufman, M. Sudan, and M. Viderman. Locally testable codes require redundant testers. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC), pages 52--61, 2009.
[13]
E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. Some 3CNF properties are hard to test. SIAM J. on Computing, 35(1):1--21, 2005.
[14]
E. Ben-Sasson, G. Maatouk, A. Shpilka, and M. Sudan. Symmetric LDPC codes are not necessarily locally testable. In preparation, 2010.
[15]
E. Ben-Sasson, N. Ron-Zewi, and M. Sudan. Sparse affine-invariant linear codes are locally testable. Electronic Colloquium on Computational Complexity (ECCC), 19:49, 2012.
[16]
E. Ben-Sasson and M. Sudan. Simple PCPs with poly-log rate and query complexity. In H. N. Gabow and R. Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22--24, 2005, pages 266--275. ACM, 2005.
[17]
E. Ben-Sasson and M. Sudan. Limits on the rate of locally testable affine-invariant codes. Electronic Colloquium on Computational Complexity (ECCC), 17:108, 2010.
[18]
E. Ben-Sasson and M. Viderman. Composition of Semi-LTCs by Two-Wise Tensor Products. In Proceedings of the Approximation, Randomization, and Combinatorial Optimization, (APPROX-RANDOM 2009), volume 5687 of Lecture Notes in Computer Science, pages 378--391. Springer, 2009.
[19]
E. Ben-Sasson and M. Viderman. Tensor Products of Weakly Smooth Codes are Robust. Theory of Computing, 5(1):239--255, 2009.
[20]
Y. M. Chee, T. Feng, S. Ling, H. Wang, and L. F. Zhang. Query-efficient locally decodable codes of subexponential length. CoRR, abs/1008.1617, 2010.
[21]
B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. Journal of the ACM, 45:965--981, 1998.
[22]
D. Coppersmith and A. Rudra. On the Robust Testability of Product of Codes. Electronic Colloquium on Computational Complexity (ECCC), (104), 2005.
[23]
A. Deshpande, R. Jain, T. Kavitha, J. Radhakrishnan, and S. V. Lokam. Better lower bounds for locally decodable codes. In IEEE Conference on Computational Complexity, pages 184--193, 2002.
[24]
I. Dinur, M. Sudan, and A. Wigderson. Robust local testability of tensor products of LDPC codes. In J. Díaz, K. Jansen, J. D. P. Rolim, and U. Zwick, editors, APPROX-RANDOM, volume 4110 of Lecture Notes in Computer Science, pages 304--315. Springer, 2006.
[25]
Z. Dvir, P. Gopalan, and S. Yekhanin. Matching vector codes. Electronic Colloquium on Computational Complexity (ECCC), 17:12, 2010.
[26]
K. Efremenko. 3-query locally decodable codes of subexponential length. In M. Mitzenmacher, editor, STOC, pages 39--44. ACM, 2009.
[27]
K. Efremenko. From irreducible representations to locally decodable codes. In STOC, pages 327--338, 2012.
[28]
L. Fortnow and S. P. Vadhan, editors. Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6--8 June 2011. ACM, 2011.
[29]
K. Friedl and M. Sudan. Some improvements to total degree tests. In ISTCS, pages 190--198, 1995.
[30]
A. Garcia and H. Stichtenoth. On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields. Journal of Number Theory, 61:248--273, 1996.
[31]
O. Goldreich, H. J. Karloff, L. J. Schulman, and L. Trevisan. Lower bounds for linear locally decodable codes and private information retrieval. In IEEE Conference on Computational Complexity, pages 175--183, 2002.
[32]
V. Goppa. Algebraic-geometric codes. Izu. Akad. Nauk SSSR Ser. Mat, 46(4):762--781, 1982.
[33]
V. D. Goppa. Geometry and Codes. Springer, 1988.
[34]
E. Grigorescu, T. Kaufman, and M. Sudan. Succinct representation of codes with applications to testing. In I. Dinur, K. Jansen, J. Naor, and J. D. P. Rolim, editors, APPROX-RANDOM, volume 5687 of Lecture Notes in Computer Science, pages 534--547. Springer, 2009.
[35]
A. Guo, S. Kopparty, and M. Sudan. New affine-invariant codes from lifting. In ITCS, pages 529--540, 2013.
[36]
R. W. Hamming. Error detecting and error correcing codes. Bell System Technical Journal, 29:147---160, 1950.
[37]
J. P. Hansen and H. Stichtenoth. Group codes on certain algebraic curves with many rational points. Appl. Algebra Eng. Commun. Comput., 1:67--77, 1990.
[38]
S. Hansen. Error-correcting codes from higher-dimensional varieties. Finite Fields Appl., 7:530--552, 2001.
[39]
R. Impagliazzo and A. Wigderson. P = BPP if e requires exponential circuits: Derandomizing the xor lemma. In F. T. Leighton and P. W. Shor, editors, STOC, pages 220--229. ACM, 1997.
[40]
T. Itoh and Y. Suzuki. Improved constructions for query-efficient locally decodable codes of subexponential length. IEICE Transactions, 93-D(2):263--270, 2010.
[41]
J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes. In Proceedings of the thirty-second annual ACM symposium on Theory of computing, STOC '00, pages 80--86, New York, NY, USA, 2000. ACM.
[42]
T. Kaufman and A. Lubotzky. Edge transitive ramanujan graphs and symmetric ldpc good codes. In H. J. Karloff and T. Pitassi, editors, STOC, pages 359--366. ACM, 2012.
[43]
T. Kaufman and M. Sudan. Algebraic property testing: the role of invariance. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pages 403--412, 2008.
[44]
T. Kaufman and M. Viderman. Locally testable vs. locally decodable codes. In M. J. Serna, R. Shaltiel, K. Jansen, and J. D. P. Rolim, editors, APPROX-RANDOM, volume 6302 of Lecture Notes in Computer Science, pages 670--682. Springer, 2010.
[45]
T. Kaufman and A. Wigderson. Symmetric ldpc codes and local testing. In A. C.-C. Yao, editor, ICS, pages 406--421. Tsinghua University Press, 2010.
[46]
I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable codes via a quantum argument. J. Comput. Syst. Sci., 69(3):395--420, 2004.
[47]
S. Kopparty, S. Saraf, and S. Yekhanin. High-rate codes with sublinear-time decoding. In Fortnow and Vadhancite DBLP: conf/stoc/2011, pages 167--176.
[48]
J. L. L. Gold and H. Schenck. Cayley-bacharach and evaluation codes on complete intersections. J. Pure Appl. Algebra, 196:91--99, 2005.
[49]
G. Lachaud. Number of points of plane sections and linear codes defined on algebraic varieties. Arithmetic, Geometry and Coding Theory, Proceedings Luminy, pages 77--104, 1993.
[50]
R. J. Lipton. Efficient checking of computations. In Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science, STACS '90, pages 207--215, 1990.
[51]
J. B. Little. Algebraic geometry codes from higher dimensional varieties. CoRR, abs/0802.2349, 2008.
[52]
C. Lund, L. Fortnow, H. Karloff, and N. Noam. Algebraic methods for interactive proof systems. Journal of the ACM, 39(4):859--868, 1992.
[53]
S. V. M.A. Tsfasman and T. Zink. Modular curves, shimura curves, and goppa codes, better than varshamov-gilbert bound. math. Nachr., 109:21--28, 1982.
[54]
F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. North-Holland Amsterdam, 1978.
[55]
K. Obata. Optimal lower bounds for 2-query locally decodable linear codes. In J. D. P. Rolim and S. P. Vadhan, editors, RANDOM, volume 2483 of Lecture Notes in Computer Science, pages 39--50. Springer, 2002.
[56]
J. Pedersen. A function field related to the ree group. Lect. Notes Math., 1518:122--132, 1992.
[57]
P. Raghavendra. A note on yekhanin's locally decodable codes. Electronic Colloquium on Computational Complexity (ECCC), 14(016), 2007.
[58]
A. A. Razborov and S. Yekhanin. An omega(n1/3) lower bound for bilinear group based private information retrieval. Theory of Computing, 3(1):221--238, 2007.
[59]
I. S. Reed. A class of multiple-error-correcting codes and the decoding scheme. IEEE Transactions on Information Theory, (4):38--49, 1954.
[60]
F. rodier. Codes from flag varieties over a finite field. J. Pure Appl. Algebra, 178:203--214, 2003.
[61]
R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudorandom generator. J. ACM, 52(2):172--216, 2005.
[62]
A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869--877, 1992.
[63]
C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379---423, 623--656, 1948.
[64]
C. E. Shannon. Communication theory - exposition of fundamentals. IEEE Transactions on Information Theory, 1:44--47, 1953.
[65]
H. Stichtenoth. On automorphisms of geometric goppa codes. Journal of Algebra, page 113.
[66]
H. Stichtenoth. Algebraic function fields and codes. Universitext. Springer, 1993.
[67]
M. Sudan. Invariance in property testing. Electronic Colloquium on Computational Complexity (ECCC), (051), 2010.
[68]
M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the xor lemma (extended abstract). In J. S. Vitter, L. L. Larmore, and F. T. Leighton, editors, STOC, pages 537--546. ACM, 1999.
[69]
M. Tsfasman and S.G.Vladut. Algebraic-geometric codes. (Kluwer, Dordrecht, 1991.
[70]
P. Valiant. The tensor product of two codes is not necessarily robustly testable. In C. Chekuri, K. Jansen, J. D. P. Rolim, and L. Trevisan, editors, APPROX-RANDOM, volume 3624 of Lecture Notes in Computer Science, pages 472--481. Springer, 2005.
[71]
S. Wehner and R. de Wolf. Improved lower bounds for locally decodable codes and private information retrieval. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, ICALP, volume 3580 of Lecture Notes in Computer Science, pages 1424--1436. Springer, 2005.
[72]
D. P. Woodruff. New lower bounds for general locally decodable codes. Electronic Colloquium on Computational Complexity (ECCC), 14(006), 2007.
[73]
C. Xing. On automorphism groups of the hermitian codes. IEEE Transactions on Information Theory, 41(6):1629--1635, 1995.
[74]
S. Yekhanin. Towards 3-query locally decodable codes of subexponential length. J. ACM, 55(1), 2008.
[75]
S. Yekhanin. Locally decodable codes: A brief survey. In Y. M. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and C. Xing, editors, IWCC, volume 6639 of Lecture Notes in Computer Science, pages 273--282. Springer, 2011.

Cited By

View all
  • (2022)Norm-trace-lifted codes over binary fields2022 IEEE International Symposium on Information Theory (ISIT)10.1109/ISIT50566.2022.9834497(3079-3084)Online publication date: 26-Jun-2022
  • (2020)Efficient Multi-Point Local Decoding of Reed-Muller Codes via Interleaved CodexIEEE Transactions on Information Theory10.1109/TIT.2019.293913566:1(263-272)Online publication date: Jan-2020
  • (2016)Constant Rate PCPs for Circuit-SAT with Sublinear Query ComplexityJournal of the ACM10.1145/290129463:4(1-57)Online publication date: 8-Nov-2016
  • Show More Cited By

Index Terms

  1. A new family of locally correctable codes based on degree-lifted algebraic geometry codes

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    STOC '13: Proceedings of the forty-fifth annual ACM symposium on Theory of Computing
    June 2013
    998 pages
    ISBN:9781450320290
    DOI:10.1145/2488608
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 June 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. algebraic geometry codes
    2. error correcting codes
    3. locally correctable codes
    4. locally decodable codes

    Qualifiers

    • Research-article

    Conference

    STOC'13
    Sponsor:
    STOC'13: Symposium on Theory of Computing
    June 1 - 4, 2013
    California, Palo Alto, USA

    Acceptance Rates

    STOC '13 Paper Acceptance Rate 100 of 360 submissions, 28%;
    Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)10
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 23 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Norm-trace-lifted codes over binary fields2022 IEEE International Symposium on Information Theory (ISIT)10.1109/ISIT50566.2022.9834497(3079-3084)Online publication date: 26-Jun-2022
    • (2020)Efficient Multi-Point Local Decoding of Reed-Muller Codes via Interleaved CodexIEEE Transactions on Information Theory10.1109/TIT.2019.293913566:1(263-272)Online publication date: Jan-2020
    • (2016)Constant Rate PCPs for Circuit-SAT with Sublinear Query ComplexityJournal of the ACM10.1145/290129463:4(1-57)Online publication date: 8-Nov-2016
    • (2013)Constant Rate PCPs for Circuit-SAT with Sublinear Query ComplexityProceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science10.1109/FOCS.2013.42(320-329)Online publication date: 26-Oct-2013

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media