Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2488388.2488446acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Interactive exploratory search for multi page search results

Published: 13 May 2013 Publication History

Abstract

Modern information retrieval interfaces typically involve multiple pages of search results, and users who are recall minded or engaging in exploratory search using ad hoc queries are likely to access more than one page. Document rankings for such queries can be improved by allowing additional context to the query to be provided by the user herself using explicit ratings or implicit actions such as clickthroughs. Existing methods using this information usually involved detrimental UI changes that can lower user satisfaction. Instead, we propose a new feedback scheme that makes use of existing UIs and does not alter user's browsing behaviour; to maximise retrieval performance over multiple result pages, we propose a novel retrieval optimisation framework and show that the optimal ranking policy should choose a diverse, exploratory ranking to display on the first page. Then, a personalised re-ranking of the next pages can be generated based on the user's feedback from the first page. We show that document correlations used in result diversification have a significant impact on relevance feedback and its effectiveness over a search session. TREC evaluations demonstrate that our optimal rank strategy (including approximative Monte Carlo Sampling) can naturally optimise the trade-off between exploration and exploitation and maximise the overall user's satisfaction over time against a number of similar baselines.

References

[1]
Agichtein, E., Brill, E., and Dumais, S. Improving web search ranking by incorporating user behavior information. SIGIR '06, ACM, pp. 19--26.
[2]
Agrawal, R., Gollapudi, S., Halverson, A., and Ieong, S. Diversifying search results. WSDM '09, ACM, pp. 5--14.
[3]
Ashkan, A., Clarke, C. L., Agichtein, E., and Guo, Q. Classifying and characterizing query intent. ECIR '09, Springer-Verlag, pp. 578--586.
[4]
Bellman, R. E. Dynamic Programming. Dover Publications, Incorporated, 2003.
[5]
Billerbeck, B., and Zobel, J. Questioning query expansion: an examination of behaviour and parameters. ADC '04, Australian Computer Society, Inc., pp. 69--76.
[6]
Brandt, C., Joachims, T., Yue, Y., and Bank, J. Dynamic ranked retrieval. WSDM '11, ACM, pp. 247--256.
[7]
Cao, G., Nie, J.-Y., Gao, J., and Robertson, S. Selecting good expansion terms for pseudo-relevance feedback. SIGIR '08, pp. 243--250.
[8]
Carbonell, J., and Goldstein, J. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In In Research and Development in Information Retrieval (1998), pp. 335--336.
[9]
Cassandra, A. A survey of POMDP applications. In Working Notes of AAAI 1998 Fall Symposium on Planning with Partially Observable Markov Decision Processes (1998), pp. 17--24.
[10]
Chen, H., and Karger, D. R. Less is more: probabilistic models for retrieving fewer relevant documents. In SIGIR (2006), pp. 429--436.
[11]
Clarke, C. L., Kolla, M., Cormack, G. V., Vechtomova, O., Ashkan, A., Büttcher, S., and MacKinnon, I. Novelty and diversity in information retrieval evaluation. SIGIR '08, ACM, pp. 659--666.
[12]
Craswell, N., Zoeter, O., Taylor, M., and Ramsey, B. An experimental comparison of click position-bias models. WSDM '08, ACM, pp. 87--94.
[13]
Fox, S., Karnawat, K., Mydland, M., Dumais, S., and White, T. Evaluating implicit measures to improve web search. ACM Trans. Inf. Syst. 23 (April 2005), 147--168.
[14]
Hemmje, M. A 3d based user interface for information retrieval systems. In Proceedings of the IEEE Visualization '93 Workshop on Database Issues for Data Visualization (1993), Springer-Verlag, pp. 194--209.
[15]
Hofmann, K., Whiteson, S., and de Rijke, M. Balancing exploration and exploitation in learning to rank online. In Proceedings of the 33rd European conference on Advances in information retrieval (2011), ECIR'11, pp. 251--263.
[16]
Joachims, T. Optimizing search engines using clickthrough data. KDD '02, ACM, pp. 133--142.
[17]
Koenemann, J., and Belkin, N. J. A case for interaction: a study of interactive information retrieval behavior and effectiveness. CHI '96, ACM, pp. 205--212.
[18]
Kules, B., and Capra, R. Visualizing stages during an exploratory search session. HCIR '11.
[19]
Morita, M., and Shinoda, Y. Information filtering based on user behavior analysis and best match text retrieval. SIGIR '94, Springer-Verlag New York, Inc., pp. 272--281.
[20]
Pandey, S., Chakrabarti, D., and Agarwal, D. Multi-armed bandit problems with dependent arms. ICML '07, ACM, pp. 721--728.
[21]
Radlinski, F., Kleinberg, R., and Joachims, T. Learning diverse rankings with multi-armed bandits. ICML '08, ACM, pp. 784--791.
[22]
Radlinski, F., Szummer, M., and Craswell, N. Inferring query intent from reformulations and clicks. WWW '10, pp. 1171--1172.
[23]
Raman, K., Joachims, T., and Shivaswamy, P. Structured learning of two-level dynamic rankings. CIKM '11, ACM, pp. 291--296.
[24]
Robertson, S., and Hull, D. A. The trec-9 filtering track final report. In TREC (2001), pp. 25--40.
[25]
Robertson, S. E. The Probability Ranking Principle in IR. Journal of Documentation 33, 4 (1977), 294--304.
[26]
Rocchio, J. Relevance Feedback in Information Retrieval. 1971, pp. 313--323.
[27]
Rui, Y., Huang, T. S., Ortega, M., and Mehrotra, S. Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans. Circuits Syst. Video Techn. 8, 5 (1998), 644--655.
[28]
Ruthven, I. Re-examining the potential effectiveness of interactive query expansion. SIGIR '03, ACM, pp. 213--220.
[29]
Shen, X., Tan, B., and Zhai, C. Context-sensitive information retrieval using implicit feedback. SIGIR '05, ACM, pp. 43--50.
[30]
Shen, X., Tan, B., and Zhai, C. Implicit user modeling for personalized search. CIKM '05, ACM, pp. 824--831.
[31]
Shen, X., and Zhai, C. Active feedback in ad hoc information retrieval. SIGIR '05, ACM, pp. 59--66.
[32]
Sloan, M., and Wang, J. Iterative expectation for multi period information retrieval. In Workshop on Web Search Click Data (2013), WSCD'13.
[33]
Spink, A., Jansen, B. J., and Ozmultu, C. H. Use of query reformulation and relevance feedback by Excite users. Internet Research: Electronic Networking Applications and Policy 10, 4 (2000), 317--328.
[34]
Stephen, R., and Hugo, Z. The probabilistic relevance framework: BM25 and beyond. Foundations and Trends in Information Retrieval 3, 4 (2009).
[35]
Sugiyama, K., Hatano, K., and Yoshikawa, M. Adaptive web search based on user profile constructed without any effort from users. WWW '04, ACM, pp. 675--684.
[36]
Voorhees, E. M. The cluster hypothesis revisited. SIGIR '85, pp. 188--196.
[37]
Wang, J., and Zhu, J. Portfolio theory of information retrieval. SIGIR'09, ACM, pp. 115--122.
[38]
Wang, J., and Zhu, J. On statistical analysis and optimization of information retrieval effectiveness metrics. SIGIR '10, pp. 226--233.
[39]
White, R. W., and Ruthven, I. A study of interface support mechanisms for interactive information retrieval. J. Am. Soc. Inf. Sci. Technol. 57, 7 (May 2006), 933--948.
[40]
White, R. W., Ruthven, I., and Jose, J. M. A study of factors affecting the utility of implicit relevance feedback. ACM Press, pp. 35--42.
[41]
Xu, Z., and Akella, R. Active relevance feedback for difficult queries. CIKM '08, ACM, pp. 459--468.
[42]
Yan, R., Hauptmann, A. G., and Jin, R. Negative pseudo-relevance feedback in content-based video retrieval. MULTIMEDIA '03, ACM, pp. 343--346.
[43]
Zamir, O., and Etzioni, O. Grouper: a dynamic clustering interface to web search results. WWW '99, Elsevier North-Holland, Inc., pp. 1361--1374.
[44]
Zhang, L., and Zhang, Y. Interactive retrieval based on faceted feedback. SIGIR '10, ACM, pp. 363--370.

Cited By

View all
  • (2021)Component-based Analysis of Dynamic Search PerformanceACM Transactions on Information Systems10.1145/348323740:3(1-47)Online publication date: 22-Nov-2021
  • (2021)Semantic Hilbert Space for Interactive Image RetrievalProceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3471158.3472253(307-315)Online publication date: 11-Jul-2021
  • (2020)Navigation leads for exploratory search and navigation in digital librariesKnowledge and Information Systems10.1007/s10115-019-01434-2Online publication date: 31-Jan-2020
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '13: Proceedings of the 22nd international conference on World Wide Web
May 2013
1628 pages
ISBN:9781450320351
DOI:10.1145/2488388

Sponsors

  • NICBR: Nucleo de Informatcao e Coordenacao do Ponto BR
  • CGIBR: Comite Gestor da Internet no Brazil

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 May 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. diversity
  2. exploratory search
  3. interactive ranking and retrieval

Qualifiers

  • Research-article

Conference

WWW '13
Sponsor:
  • NICBR
  • CGIBR
WWW '13: 22nd International World Wide Web Conference
May 13 - 17, 2013
Rio de Janeiro, Brazil

Acceptance Rates

WWW '13 Paper Acceptance Rate 125 of 831 submissions, 15%;
Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Component-based Analysis of Dynamic Search PerformanceACM Transactions on Information Systems10.1145/348323740:3(1-47)Online publication date: 22-Nov-2021
  • (2021)Semantic Hilbert Space for Interactive Image RetrievalProceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3471158.3472253(307-315)Online publication date: 11-Jul-2021
  • (2020)Navigation leads for exploratory search and navigation in digital librariesKnowledge and Information Systems10.1007/s10115-019-01434-2Online publication date: 31-Jan-2020
  • (2019)A Study of Context Dependencies in Multi-page Product SearchProceedings of the 28th ACM International Conference on Information and Knowledge Management10.1145/3357384.3358095(2333-2336)Online publication date: 3-Nov-2019
  • (2019)Memory-Augmented Dialogue Management for Task-Oriented Dialogue SystemsACM Transactions on Information Systems10.1145/331761237:3(1-30)Online publication date: 8-Jul-2019
  • (2019)Meta-evaluation of Dynamic Search: How Do Metrics Capture Topical Relevance, Diversity and User Effort?Advances in Information Retrieval10.1007/978-3-030-15712-8_39(607-620)Online publication date: 7-Apr-2019
  • (2018)Multi Page Search with Reinforcement Learning to RankProceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3234944.3234977(175-178)Online publication date: 10-Sep-2018
  • (2018)Interactive Intent Modeling for Exploratory SearchACM Transactions on Information Systems10.1145/323159336:4(1-46)Online publication date: 3-Oct-2018
  • (2018)Interactive Spoken Content Retrieval by Deep Reinforcement LearningIEEE/ACM Transactions on Audio, Speech and Language Processing10.1109/TASLP.2018.285273926:12(2447-2459)Online publication date: 1-Dec-2018
  • (2017)On Effective Dynamic Search in Specialized DomainsProceedings of the ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3121050.3121065(177-184)Online publication date: 1-Oct-2017
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media