Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2465506.2465935acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Creative telescoping for rational functions using the griffiths: dwork method

Published: 26 June 2013 Publication History

Abstract

Creative telescoping algorithms compute linear differential equations satisfied by multiple integrals with parameters. We describe a precise and elementary algorithmic version of the Griffiths-Dwork method for the creative telescoping of rational functions. This leads to bounds on the order and degree of the coefficients of the differential equation, and to the first complexity result which is single exponential in the number of variables. One of the important features of the algorithm is that it does not need to compute certificates. The approach is vindicated by a prototype implementation.

References

[1]
T. G. Abbott, K. S. Kedlaya, and D. Roe. Bounding Picard numbers of surfaces using p-adic cohomology. In AGCT 2005, volume 21 of Sémin. Congr., pages 125--159. SMF, Paris, 2010.
[2]
M. Apagodu and D. Zeilberger. Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf- Zeilberger theory. Adv. in Appl. Math., 37(2):139--152, 2006.
[3]
A. Bostan, S. Chen, F. Chyzak, and Z. Li. Complexity of creative telescoping for bivariate rational functions. In ISSAC'10, pages 203--210. ACM, 2010.
[4]
S. Chen, M. Kauers, and M. F. Singer. Telescopers for rational and algebraic functions via residues. In ISSAC'12, pages 130--137. ACM, 2012.
[5]
G. Christol. Diagonales de fractions rationnelles et equations différentielles. In Groupe de travail d'analyse ultramétrique, 1982/83, volume 12, issue 2, exp. 18, pages 1--10. Paris, 1984.
[6]
G. Christol. Diagonales de fractions rationnelles et équations de Picard-Fuchs. In Groupe de travail d'analyse ultramétrique, 1984/85, volume 12, issue 1, exp. 13, pages 1--12. Paris, 1985.
[7]
F. Chyzak. An extension of Zeilberger's fast algorithm to general holonomic functions. Disc. Math., 217(1--3):115--134, 2000.
[8]
B. Dwork. On the zeta function of a hypersurface. IHES Publ. Math., (12):5--68, 1962.
[9]
B. Dwork. On the zeta function of a hypersurface. II. Ann. of Math. (2), 80:227--299, 1964.
[10]
J.gathenvon zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge, second edition, 2003.
[11]
R. Gerkmann. Relative rigid cohomology and deformation of hypersurfaces. Int. Math. Res. Pap., (1):Art. 3, 1--67, 2007.
[12]
P. A. Griffiths. On the periods of certain rational integrals. I, II. Ann. of Math, 90(3):460--495, 496--541, 1969.
[13]
C.-P. Jeannerod and G. Villard. Essentially optimal computation of the inverse of generic polynomial matrices. J. Complexity, 21(1):72--86, 2005.
[14]
M. Kauers and D. Zeilberger. The computational challenge of enumerating high-dimensional rook walks. Adv. in Appl. Math., 47(4):813--819, 2011.
[15]
C. Koutschan. A fast approach to creative telescoping. Math. Comput. Sci., 4(2--3):259--266, 2010.
[16]
D. Lazard. Algèbre linéaire sur K{X_1,...,X_n}, et élimination. Bull. Soc. Math. France, 105(2):165--190, 1977.
[17]
L. Lipshitz. The diagonal of a D-finite power series is D-finite. J. Algebra, 113(2):373--378, 1988.
[18]
F. S. Macaulay. The algebraic theory of modular systems, volume XXXI of Cambridge Mathematical Library. Cambridge University Press, 1994. Revised reprint of the 1916 original.
[19]
P. Monsky. p-adic analysis and zeta functions, volume 4 of Lectures in Mathematics, Department of Mathematics, Kyoto University. Kinokuniya Book-Store Co. Ltd., Tokyo, 1970.
[20]
D. R. Morrison. Picard-Fuchs equations and mirror maps for hypersurfaces. In Essays on mirror manifolds, pages 241--264. Int. Press, Hong Kong, 1992.
[21]
H. Movasati. Multiple integrals and modular differential equations. IMPA Mathematical Publications. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2011.
[22]
S. Pancratz. Computing Gauss-Manin connections for families of projectives hypersurfaces. A thesis submitted for the Transfer of Status, Michaelmas, 2009.
[23]
É. Picard. Quelques remarques sur les intégrales doubles de seconde espèce dans la théorie des surfaces algébriques. C. R. Acad. Sci. Paris, 129:539--540, 1899.
[24]
É. Picard. Sur les périodes des intégrales doubles et sur une classe d'équations différentielles linéaires. C. R. Acad. Sci. Paris, 134:69--71, 1902.
[25]
É. Picard and G. Simart. Théorie des fonctions algébriques de deux variables indépendantes. Gauthier-Villars, 1906. Tome II.
[26]
N. Takayama. An algorithm of constructing the integral of a module -- an infinite dimensional analog of Gröbner basis. In ISSAC'90, pages 206--211. ACM, 1990.
[27]
H. S. Wilf and D. Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and "q") multisum/integral identities. Invent. Math., 108(3):575--633, 1992.
[28]
D. Zeilberger. A holonomic systems approach to special functions identities. J. Comput. Appl. Math., 32(3):321--368, 1990.
[29]
D. Zeilberger. The method of creative telescoping. J. Symb. Comp., 11(3):195--204, 1991.
[30]
W. Zhou. Fast Order Basis and Kernel Basis Computation and Related Problems. PhD thesis, Univ. of Waterloo, 2013.

Cited By

View all
  • (2024)Plea for Diagonals and Telescopers of Rational FunctionsUniverse10.3390/universe1002007110:2(71)Online publication date: 2-Feb-2024
  • (2024)Effective homology and periods of complex projective hypersurfacesMathematics of Computation10.1090/mcom/3947Online publication date: 20-Mar-2024
  • (2024)Reduction-Based Creative Telescoping for Definite Summation of D-finite FunctionsJournal of Symbolic Computation10.1016/j.jsc.2024.102329(102329)Online publication date: Apr-2024
  • Show More Cited By

Index Terms

  1. Creative telescoping for rational functions using the griffiths: dwork method

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation
    June 2013
    400 pages
    ISBN:9781450320597
    DOI:10.1145/2465506
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 June 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. algorithms
    2. complexity
    3. creative telescoping
    4. griffiths-dwork method
    5. integration
    6. picard-fuchs equation

    Qualifiers

    • Research-article

    Conference

    ISSAC'13
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 18 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media