Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2463372.2463502acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Evolving artificial neural networks for nonlinear feature construction

Published: 06 July 2013 Publication History

Abstract

We use neuroevolution to construct nonlinear transformation functions for feature construction that map points in the original feature space to augmented pattern vectors and improve the performance of generic classifiers. Our research demonstrates that we can apply evolutionary algorithms to both adapt the weights of a fully connected standard multi-layer perceptron (MLP), and optimize the topology of a generalized multi-layer perceptron (GMLP). The evaluation of the MLPs on four commonly used data sets shows an improvement in classification accuracy ranging from 4 to 13 percentage points over the performance on the original pattern set. The GMLPs obtain a slightly better accuracy and conserve 14% to 54% of all neurons and between 40% and 89% of all connections compared to the standard MLP.

References

[1]
C. Aggarwal. The Generalized Dimensionality Reduction Problem. In Proc. SDM, pages 607--618. SIAM, 2010.
[2]
A. Aizerman, E. M. Braverman, and L. I. Rozoner. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning. Automat. and Rem. Contr., 25:821--837, 1964.
[3]
T. Back. Evolutionary Algorithms in Theory and Practice. Oxford University Press, 1996.
[4]
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy Layer-Wise Training of Deep Networks. In Proc. NIPS, pages 153--160, 2006.
[5]
T. Berka and H. A. Mayer. Nonlinear Feature Construction with Evolved Neural Networks for Classification Problems. In Proc. ICPRAM. INSTICC, 2012.
[6]
C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Inc., USA, 1995.
[7]
T.-J. Chin and D. Suter. Incremental Kernel PCA for Efficient Non-linear Feature Extraction. In Proc. BMVC, pages 939--948. BMVA, 2006.
[8]
A. Coelho, D. Weingaertner, and F. J. von Zuben. Evolving Heteregeneous Neural Networks for Classification Problems. In Proc. GECCO, pages 266--273, USA, July 2001. Morgan Kaufmann.
[9]
P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling Wine Preferences by Data Mining from Physicochemical Properties. Decis. Support Syst., 47(4):547--553, 2009.
[10]
M. Dragoni, A. Azzini, and A. Tettamanzi. A Neuro-Evolutionary Approach to Electrocardiographic Signal Classification. In Proc. WIVACE, pages 1--11, Italy, 2012. Universit`a degli Studi di Parma, Dipartimento di Scienze Sociali.
[11]
A. Frank and A. Asuncion. UCI Machine Learning Repository, 2010.
[12]
H. Guo and A. K. Nandi. Breast Cancer Diagnosis using Genetic Programming Generated Feature. Pattern Recogn., 39(5):980--987, 2006.
[13]
G. E. Hinton, S. Osindero, and Y. W. Teh. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput., 18:1527--1554, 2006.
[14]
G.-B. Huang, D. H. Wang, and Y. Lan. Extreme Learning Machines: A Survey. Int. J. Mach. Learn. & Cyber., 2(2):107--122, 2011.
[15]
G.-B. Huang, H. Zhou, X. Ding, and R. Zhang. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. B. Cybern., 42(2):513--529, 2012.
[16]
R. Huber, R. Schwaiger, and H. A. Mayer. On the Role of Regularization Parameters in Fitness Functions for Evolutionary Designed Artificial Neural Networks. In Proc. WCNN, pages 1063--1066. INNS, Lawrence Erlbaum Associates, September 1996.
[17]
A. Ittner and M. Schlosser. Discovery of Relevant New Features by Generating Non-Linear Decision Trees. In Proc. KDD, pages 108--113. AAAI, 1996.
[18]
G. H. John, R. Kohavi, and K. Pfleger. Irrelevant Features and the Subset Selection Problem. In Proc. ICML, pages 121--129, 1994.
[19]
K. I. Kim, M. O. Franz, and B. Scholkopf. Iterative Kernel Principal Component Analysis for Image Modeling. IEEE Trans. Pattern Anal. Mach. Intell., 27(9):1351--1366, 2005.
[20]
A. Mayer and H. A. Mayer. Multi--Chromosomal Representations in Neuroevolution. In Proc. CI. ACTA Press, November 2006.
[21]
H. A. Mayer and R. Schwaiger. Differentiation of Neuron Types by Evolving Activation Function Templates for Artificial Neural Networks. In Proc. WCCI, pages 1773--1778. IEEE, May 2002.
[22]
K. Neshatian, M. Zhang, and P. Andreae. A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using Genetic Programming. IEEE Trans. Evol. Comput., 16(5):645--661, Oct. 2012.
[23]
M. Ranzato, Y.-l. Boureau, S. Chopra, and Y. Lecun. A Unified Energy-Based Framework for Unsupervised Learning. In Proc. AISTATS, volume 2, pages 860--867, 2007.
[24]
D. E. Rumelhart, B. Widrow, and M. A. Lehr. The Basic Ideas in Neural Networks. Comm. ACM, 37(3):87--92, March 1994.
[25]
B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput., 10(5):1299--1319, 1998.
[26]
M. J. J. Scott, M. Niranjan, and R. W. Prager. Realisable Classifiers: Improving Operating Performance on Variable Cost Problems. In Proc. BMVC. BMVA, 1998.
[27]
J. R. Sherrah, R. E. Bogner, and A. Bouzerdoum. The Evolutionary Pre-Processor: Automatic Feature Extraction for Supervised Classification using Genetic Programming. In Proc. GP, pages 304--312. Morgan Kaufmann, July 1997.
[28]
V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker. Classification of Radar Returns from the Ionosphere using Neural Networks. Johns Hopkins APL Tech. Dig., 10:262--266, 1989.
[29]
W. N. Street, W. H. Wolberg, and O. L. Mangasarian. Nuclear Feature Extraction for Breast Tumor Diagnosis. In Proc. Electronic Imaging, volume 1905, pages 861--870. SPIE, 1993.
[30]
V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, USA, 1995.
[31]
X. Yao. Evolving Artificial Neural Networks. Proc. IEEE, 87(9):1423--1447, 1999.
[32]
Y. Zhang and P. I. Rockett. A Generic Optimising Feature Extraction Method Using Multiobjective Genetic Programming. Appl. Soft Comput., 11(1):1087--1097, Jan. 2011.
[33]
Q.-Y. Zhu, A. Qin, P. Suganthan, and G.-B. Huang. Evolutionary Extreme Learning Machine. Pattern Recognition, 38(10):1759--1763, 2005.
[34]
T. Ziemke, J. Carlsson, and M. Boden. An Experimental Comparison of Weight Evolution in Neural Control Architectures for a 'Garbage-Collecting' Khepera Robot. In Proc. Khepera Workshop. HNI--Verlagsschriftenreihe, 1999.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '13: Proceedings of the 15th annual conference on Genetic and evolutionary computation
July 2013
1672 pages
ISBN:9781450319638
DOI:10.1145/2463372
  • Editor:
  • Christian Blum,
  • General Chair:
  • Enrique Alba
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 July 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. classification
  2. evolutionary algorithm
  3. feature construction
  4. multi-layer perceptron
  5. nonlinear dimensionality reduction

Qualifiers

  • Research-article

Conference

GECCO '13
Sponsor:
GECCO '13: Genetic and Evolutionary Computation Conference
July 6 - 10, 2013
Amsterdam, The Netherlands

Acceptance Rates

GECCO '13 Paper Acceptance Rate 204 of 570 submissions, 36%;
Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 121
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media