Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2330163.2330192acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Bee algorithms for solving DNA fragment assembly problem with noisy and noiseless data

Published: 07 July 2012 Publication History

Abstract

DNA fragment assembly problem is one of the crucial challenges faced by computational biologists where, given a set of DNA fragments, we have to construct a complete DNA sequence from them. As it is an NP-hard problem, accurate DNA sequence is hard to find. Moreover, due to experimental limitations, the fragments considered for assembly are exposed to additional errors while reading the fragments. In such scenarios, meta-heuristic based algorithms can come in handy. We analyze the performance of two swarm intelligence based algorithms namely Artificial Bee Colony (ABC) algorithm and Queen Bee Evolution Based on Genetic Algorithm (QEGA) to solve the fragment assembly problem and report quite promising results. Our main focus is to design meta-heuristic based techniques to efficiently handle DNA fragment assembly problem for noisy and noiseless data.

References

[1]
http://ab.inf.uni-tuebingen.de/teaching/ss07/albi2/script/readsim_2July2007.pdf. {Online; accessed 16-November-2011}.
[2]
http://www.ncbi.nlm.nih.gov/nuccore/178817?report=fasta(M15421.1). {Online; accessed 20-November-2011}.
[3]
http://www.ncbi.nlm.nih.gov/nuccore/34645?report=fasta(X60189.1. {Online; accessed 20-November-2011}.
[4]
http://www.ncbi.nlm.nih.gov/nuccore/215104?report=fasta(J02459.1. {Online; accessed 20-November-2011}.
[5]
http://0-www.ncbi.nlm.nih.gov.ilsprod.lib.neu.edu/Traces/wgs/?hide\_master\\*=\&val=ACIN02000001\#9(ACIN\_ALL). {Online; accessed20-November-2011}.
[6]
E. Alba and G. Luque. A new local search algorithm for the DNA fragment assembly problem. In Evolutionary Computation in Combinatorial Optimization, EvoCOP'07, Lecture Notes in Computer Science 4446, pages 1--12, Valencia, Spain, April 2007. Springer.
[7]
T. Chen and S. S. Skiena. Trie-based data structures for sequence assembly. In The Eighth Symposium on Combinatorial Pattern Matching, pages 206--223. Springer-Verlag, 1997.
[8]
B. Dorronsoro, E. Alba, G. Luque, and P. Bouvry. A self-adaptive cellular memetic algorithm for the DNA fragment assembly problem. In IEEE Congress on Evolutionary Computation, pages 2651--2658, 2008.
[9]
M. L. Engle and C. Burks. Artificially generated data sets for testing DNA sequence assembly algorithms. Genomics, 16(1):286--8, 1993.
[10]
M. M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057):376--80, 2005.
[11]
J. S. Firoz, M. S. Rahman, and T. k. Saha. Analyzing memetic algorithm behavior in DNA fragment assembly problem for noisy data. In 4th International Conference on Bioinformatics and Computational Biology (BICoB),Las Vegas, Nevada, USA, 2012.
[12]
P. Green. Phrap. http://www.phrap.org/. {Online; accessed 20-November-2011}.
[13]
X. Huang and A. Madan. Cap3: A DNA sequence assembly program. Genome Research, 9:868--877, 1999.
[14]
C. G. Hur. Fasim: Fragments assembly simulation using biased-sampling model and assembly simulation for microbial genome shotgun sequencing.
[15]
S. H. Jung. Queen-bee evolution for genetic algorithms. Electronics Letters, 39:575--576, March 2003.
[16]
D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. of Global Optimization, 39:459--471, November 2007.
[17]
J. Kubalik, P. Buryan, and L. Wagner. Solving the dna fragment assembly problem efficiently using iterative optimization with evolved hypermutations. In Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO '10, pages 213--214, New York, NY, USA, 2010. ACM.
[18]
G. Luque and E. Alba. Metaheuristics for the DNA Fragment Assembly Problem. International Journal of Computational Intelligence Research, 1(1--2):98--108, 2005.
[19]
M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S. Braverman, Y.-J. Chen, Z. Chen, and et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057):376--380, 2005.
[20]
P. Meksangsouy and N. Chaiyaratana. DNA fragment assembly using an ant colony system algorithm. In Proceedings of Congress on Evolutionary Computation, volume 3, pages 1756--1763, 2003.
[21]
D. Meldrum. Automation for genomics, part one: Preparation for sequencing. Genome Research, 10(8):1081--1092, 2000.
[22]
D. Meldrum. Automation for genomics, part two: Sequencers, microarrays, and future trends. Genome Research, 10(9):1288--1303, 2000.
[23]
G. Minetti and E. Alba. Metaheuristic assemblers of DNA strands: Noiseless and noisy cases. In IEEE Congress on Evolutionary Computation'10, pages 1--8, 2010.
[24]
E. W. Myers. Toward simplifying and accurately formulating fragment assembly. Journal of Computational Biology, 2:275--290, 1995.
[25]
G. Myers. A dataset generator for whole genome shotgun sequencing. In Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, pages 202--210. AAAI Press, 1999.
[26]
P. Pevzner. Computational molecular biology: An algorithmic approach. MIT Press, 2000.
[27]
L. Qin, Q. Jiang, Z. Zou, and Y. Cao. A queen-bee evolution based on genetic algorithm for economic power dispatch. In 39th International Universities Power Engineering Conference, volume 1, pages 453--456, September 2004.
[28]
D. R and Bentley. Whole-genome re-sequencing. Current Opinion in Genetics and Development, 16(6):545 -- 552, 2006.
[29]
D. C. Richter, F. Ott, A. F. Auch, R. Schmid, and D. H. Huson. Metasim:a sequencing simulator for genomics and metagenomics. PLoS ONE, 3(10):e3373+, 2008.
[30]
J. Setubal and J. Meidanis. Fragment assembly of DNA. Introduction to Computational Molecular Biology, pages 105--139, 1997.
[31]
J. C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS Publishing Company, 1997.
[32]
G. Sutton, W. O., A. M.D., and K. A.R. Tigr assembler: A new tool for assembling large shotgun sequencing projects. Genome Science and Tech, pages 9--19, 1995.
[33]
E. G. Talbi. Metaheuristics from design to implementation. WILEY, 2009.

Cited By

View all
  • (2023)Fragment Assembly Based Fast and Optimal DNA SequencingResearch Anthology on Bioinformatics, Genomics, and Computational Biology10.4018/979-8-3693-3026-5.ch030(633-649)Online publication date: 29-Dec-2023
  • (2023)Fragment Assembly Based Fast and Optimal DNA SequencingStructural and Functional Aspects of Biocomputing Systems for Data Processing10.4018/978-1-6684-6523-3.ch003(57-78)Online publication date: 20-Jan-2023
  • (2021)DNA Fragment Assembly Using Quantum-Inspired Genetic AlgorithmResearch Anthology on Advancements in Quantum Technology10.4018/978-1-7998-8593-1.ch009(228-245)Online publication date: 2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '12: Proceedings of the 14th annual conference on Genetic and evolutionary computation
July 2012
1396 pages
ISBN:9781450311779
DOI:10.1145/2330163
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 July 2012

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. bioinformatics
  2. combinatorial optimization
  3. dna computing
  4. genetic algorithms
  5. meta-heuristics

Qualifiers

  • Research-article

Conference

GECCO '12
Sponsor:
GECCO '12: Genetic and Evolutionary Computation Conference
July 7 - 11, 2012
Pennsylvania, Philadelphia, USA

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Fragment Assembly Based Fast and Optimal DNA SequencingResearch Anthology on Bioinformatics, Genomics, and Computational Biology10.4018/979-8-3693-3026-5.ch030(633-649)Online publication date: 29-Dec-2023
  • (2023)Fragment Assembly Based Fast and Optimal DNA SequencingStructural and Functional Aspects of Biocomputing Systems for Data Processing10.4018/978-1-6684-6523-3.ch003(57-78)Online publication date: 20-Jan-2023
  • (2021)DNA Fragment Assembly Using Quantum-Inspired Genetic AlgorithmResearch Anthology on Advancements in Quantum Technology10.4018/978-1-7998-8593-1.ch009(228-245)Online publication date: 2021
  • (2021)DNA Fragment Assembly Using Quantum-Inspired Genetic AlgorithmResearch Anthology on Multi-Industry Uses of Genetic Programming and Algorithms10.4018/978-1-7998-8048-6.ch041(811-828)Online publication date: 2021
  • (2020)An Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem: Analysis and ValidationsIEEE Access10.1109/ACCESS.2020.30448578(222144-222167)Online publication date: 2020
  • (2019)DNA Fragment Assembly Using Quantum-Inspired Genetic AlgorithmExploring Critical Approaches of Evolutionary Computation10.4018/978-1-5225-5832-3.ch005(80-98)Online publication date: 2019
  • (2018)CS-ABCInternational Journal of Data Mining and Bioinformatics10.5555/3302691.330269521:2(145-168)Online publication date: 1-Jan-2018
  • (2018)Ensamblado de fragmentos de ADN utilizando un novedoso algoritmo de luciérnaga en GPUDYNA10.15446/dyna.v85n204.6007885:204(108-116)Online publication date: 1-Jan-2018
  • (2017)An improved problem aware local search algorithm for the DNA fragment assembly problemSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-015-1875-221:7(1709-1720)Online publication date: 1-Apr-2017
  • (2017)De Novo DNA Assembly with a Genetic Algorithm Finds Accurate Genomes Even with Suboptimal FitnessApplications of Evolutionary Computation10.1007/978-3-319-55849-3_5(67-82)Online publication date: 25-Mar-2017
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media