Nothing Special   »   [go: up one dir, main page]

skip to main content
article
Free access

Using the SLEDGE package on Sturm-Liouville problems having nonempty essential spectra

Published: 01 December 1996 Publication History

Abstract

We describe the performance of the Sturm-Liouville software package SLEDGE on a variety of problems having continuous spectra. The code's output is shown to be in good accord with a wide range of known theoretical results.

References

[1]
ARONSZAJN, N. 1957. On a problem of Weyl in the theory of singular Sturm-Liouville equations. Am. J. Math. 79, 597-610.
[2]
BAILEY, P., GARBOW, B., KAPER, H., AND ZETTL, A. 1991a. Eigenvalue and eigenfunction computations for Sturm-Liouville problems. ACM Trans. Math. Softw. 17, 491-499.
[3]
BAILEY, P., GARBOW, B., KAPER, H., AND ZETTL, A. 1991b. Algorithm 700: A FORTRAN software package for Sturm-Liouville problems. ACM Trans. Math. Softw. 17, 500-501.
[4]
BAILEY, P., GORDON, M., AND SttAMPINE, L. 1978. Automatic solution of the Sturm-Liouville problem. ACM Trans. Math. Softw. 4, 193-208.
[5]
CODDINGTON, E. AND LEVINSON, N. 1955. Theory of Ordinary Differential Equations. McGraw-Hill, New York.
[6]
EASTItAM, M. S.P. 1973. The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburgh, U.K.
[7]
EASTItAM, M. S.P. 1977. Sturm-Liouville equations and purely continuous spectra. Nieuw. Arc. Wisk. 25, 169-181.
[8]
EASTItAM, M. S.P. 1989. The Asymptotic Solution of Lineal' Differential Systems: Applications of the Levinson Theorem. London Mathematical Society Monographs, vol. 4. Clarendon Press, Oxford, U.K.
[9]
EASTtIAM, M. S.P. 1991. The number of resonant states in perturbed harmonic oscillation. Q. d. Math. 42, 49-55.
[10]
EASTHAM, M. S. P. AND KALF, H. 1982. Schroedinger-type operators with continuous spectra. In Research Notes in Mathematics. Vol. 65. Pitman Advanced Publishing, London.
[11]
EASTHAM, M. S. P. AND McLEoD, J.B. 1977. The existence of eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems, d. Math. Anal. Appl. 188, 297-314.
[12]
FULTON, C. AND PRUESS, S. 1995. The computation of spectral density functions for singular Sturm-Liouville problems involving simple, continuous spectra. Colorado School of Mines, Golden, Colo. Available via www.mines.edu/fshome/spruess/recent.html or ftp.lyapunov. mine s.edu/pub/sprues s/sledge paper s/.
[13]
FULTON, C. AND PRUESS, S. 1994. Numerical approximation of singular spectral functions arising from the Fourier-Jacobi problem on a half-line with continuous spectra. In Fourier Analysis: Analytic and Geometric Aspects (Proceedings of the 6th International Workshop in Analysis and Its Applications (IWAA)), W. Bray, P. Milojevic, and P. Stanojevic, Eds. Marcel Dekker, New York, 149-169.
[14]
FULTON, C., PRUESS, S., AND XIE, Y. 1997. The automatic classification of Sturm-Liouville problems. J. Appl. Math. Cornput. To be published.
[15]
GELFAND, I. AND LEVITAN, B. 1955. On the determination of a differential equation from its spectral function. Am. Math. Soc. Transl. 2, 253-304.
[16]
GLAZMAN, I.M. 1965. Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators. S. Monson, Jerusalem.
[17]
HARTMAN, P. AND WINTNER, A. 1949. A separation theorem for continuous spectra. Am. J. Math. 71, 650-662.
[18]
INCE, E. 1931. Tables of the elliptic-cylinder functions. Proc. Roy. Soc. Edinburgh 52, 355-423.
[19]
LEVITAN, B. AND GASYMOV, M. 1964. Determination of a differential equation by two of its spectra. Russ. Math. Surv. 19, 1-63.
[20]
NAG. 1988. NAG FORTRAN Library (Mark 13 documentation). Vol. 2. Numerical Algorithms Group, Ltd., Oxford, U.K.
[21]
MARLETTA, M. AND PRYCE, J.D. 1992. Automatic solution of Sturm-Liouville problems using the Pruess method. J. Cornput. Appl. Math. 39, 57-78.
[22]
PRUESS, S. AND FULTON, C. 1993. Mathematical software for Sturm-Liouville problems. ACM Trans. Math. Softw. 19, 360-376.
[23]
PRUESS, S., FULTON, C., AND XIE, Y. 1995. An asymptotic numerical method for a class of singular Sturm-Liouville problems. SIAM J. Numer. Anal. 32, 1658-1676.
[24]
PRUESS, S., XIE, Y., AND FULTON, C. 1994. Performance of the Sturm-Liouville software package SLEDGE. Tech Rep. MCS-91-19, Dept. of Mathematics and Computer Science, Colorado School of Mines, Golden, Colo. Revised Sept. 1994.
[25]
PRYCE, J. AND MARLETTA, M. 1991. A new multi-purpose software package for SchrSdinger and Sturm-Liouville computations. Cornput. Phys. Cornmun. 62, 42-50.
[26]
THURLOW, C. 1979a. A generalization of the inverse spectral theorem of Levitan and Gasymov. Proc. Roy. Soc. Edinburgh 84A, 187-196.
[27]
THURLOW, C. 1979b. The point continuous spectrum of second order ordinary differential operators. Proc. Roy. Soc. Edinburgh 84A, 197-211.
[28]
TITCttMARStt, E.C. 1962. Eigenfunction Expansions Associated with Second Order Differential Equations, Part I. 2nd ed. Oxford University Press, New York.
[29]
VON NEUMANN, J. AND WIGN~R, E. 1929. 'IZber merkwfirdige, diskrete eigenwerte. Phys. Z. 30, 465-476.
[30]
WINTNER, A. 1946. The adiabatic linear oscillator. Am. J. Math. 68, 385-397.
[31]
WINTNER, A. 1947. Asymptotic integrations of the adiabatic oscillator. Am. J. Math. 69, 251-272.

Cited By

View all
  • (2020)The fast and accurate computation of eigenvalues and eigenfunctions of time-independent one-dimensional Schrödinger equationsComputer Physics Communications10.1016/j.cpc.2020.107568(107568)Online publication date: Aug-2020
  • (2010)Computing Eigenvalues of Left-Definite Sturm-Liouville ProblemsActa Analysis Functionalis Applicata10.3724/SP.J.1160.2010.0011012:2(110-114)Online publication date: 19-Sep-2010
  • (2010)On the location of spectral concentration for Sturm–Liouville problems with rapidly decaying potentialMathematika10.1112/S002557930001401745:01(25)Online publication date: 26-Feb-2010
  • Show More Cited By

Index Terms

  1. Using the SLEDGE package on Sturm-Liouville problems having nonempty essential spectra

      Recommendations

      Reviews

      Lawrence Shampine

      SLEDGE is an excellent package for the numerical solution of both regular and singular Sturm-Liouville problems. At present, it is the only package that attempts to estimate the spectral density function for a singular problem with continuous spectrum. This paper describes the solutions of a variety of examples for which there are theoretical results that can be used to study how well the package is able to simulate a singular spectral density function. The performance of the package is most impressive.

      Access critical reviews of Computing literature here

      Become a reviewer for Computing Reviews.

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Mathematical Software
      ACM Transactions on Mathematical Software  Volume 22, Issue 4
      Dec. 1996
      116 pages
      ISSN:0098-3500
      EISSN:1557-7295
      DOI:10.1145/235815
      • Editor:
      • Ronald Boisvert
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 December 1996
      Published in TOMS Volume 22, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Sturm-Liouville problems
      2. spectral density functions

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)50
      • Downloads (Last 6 weeks)7
      Reflects downloads up to 18 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2020)The fast and accurate computation of eigenvalues and eigenfunctions of time-independent one-dimensional Schrödinger equationsComputer Physics Communications10.1016/j.cpc.2020.107568(107568)Online publication date: Aug-2020
      • (2010)Computing Eigenvalues of Left-Definite Sturm-Liouville ProblemsActa Analysis Functionalis Applicata10.3724/SP.J.1160.2010.0011012:2(110-114)Online publication date: 19-Sep-2010
      • (2010)On the location of spectral concentration for Sturm–Liouville problems with rapidly decaying potentialMathematika10.1112/S002557930001401745:01(25)Online publication date: 26-Feb-2010
      • (2005)Computing the spectral function for singular Sturm-Liouville problemsJournal of Computational and Applied Mathematics10.5555/1056329.1716603176:1(131-162)Online publication date: 1-Apr-2005
      • (2005)Computing the spectral function for singular Sturm–Liouville problemsJournal of Computational and Applied Mathematics10.1016/j.cam.2004.07.006176:1(131-162)Online publication date: Apr-2005
      • (2002)Prof. Michael Eastham LaudatumJournal of Computational and Applied Mathematics10.5555/638714.638716148:1(.11-.13)Online publication date: 1-Nov-2002
      • (2002)Prof. Michael Eastham LaudatumJournal of Computational and Applied Mathematics10.1016/S0377-0427(02)00756-2148:1(xi-xiii)Online publication date: Nov-2002
      • (1998)Absolute continuity and spectral concentration for slowly decaying potentialsJournal of Computational and Applied Mathematics10.1016/S0377-0427(98)00087-994:2(181-197)Online publication date: 3-Aug-1998
      • (1997)Spectral concentration and rapidly decaying potentialsJournal of Computational and Applied Mathematics10.1016/S0377-0427(97)00072-181:2(333-348)Online publication date: 8-Jul-1997

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media