Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Interactive Initialization and Continuation of Homoclinic and Heteroclinic Orbits in MATLAB

Published: 01 April 2012 Publication History

Abstract

matcont is a matlab continuation package for the interactive numerical study of a range of parameterized nonlinear dynamical systems, in particular ODEs, that allows to compute curves of equilibria, limit points, Hopf points, limit cycles, flip, fold and torus bifurcation points of limit cycles. It is now possible to continue homoclinic-to-hyperbolic-saddle and homoclinic-to-saddle-node orbits in matcont. The implementation is done using the continuation of invariant subspaces, with the Riccati equations included in the defining system. A key feature is the possibility to initiate both types of homoclinic orbits interactively, starting from an equilibrium point and using a homotopy method. All known codimension-two homoclinic bifurcations are tested for during continuation. The test functions for inclination-flip bifurcations are implemented in a new and more efficient way. Heteroclinic orbits can now also be continued and an analogous homotopy method can be used for the initialization.

References

[1]
Berestycki, H. and Nirenberg, L. 1992. Travelling fronts in cylinders. Ann. Inst. H. Poincaré Anal.Non Linéaire 9, 5.
[2]
Beyn, W. J. 1990. The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10, 3, 379--405.
[3]
Beyn, W. J., Kless, W., and Thümmler, V. 2001. Continuation of low-dimensional invariant subspaces in dynamical systems of large dimension. In Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, B. Fiedler Ed. Springer, Berlin, 47--72.
[4]
Beyn, W. J., Champneys, A., Doedel, E., Govaerts, W., Kuznetsov, Yu. A., and Sandstede, B. 2002. Numerical continuation, and computation of normal forms. In Handbook of Dynamical Systems, B. Fiedler Ed., Vol. 2. Elsevier Science, North Holland, Amsterdam, 149--219.
[5]
Bindel, D., Demmel, J., and Friedman, M. 2008. Continuation of invariant subspaces in large scale bifurcation problems. SIAM J. Sci. Comput. 30, 2, 637--656.
[6]
Bykov, V. V. 1978. On the structure of a neighborhood of a separatrix contour with a saddle-focus. In Methods of Qualitative Theory of Differential Equations, Gorkii State University, Gorkii, 3--32 (In Russian).
[7]
Bykov, V. V. 1980. Bifurcations of dynamical systems close to systems with a separatrix contour containing a saddle-focus. In Methods of Qualitative Theory of Differential Equations, Gorkii State University, Gorkii, 44--72 (In Russian).
[8]
Champneys, A. R. and Kuznetsov, Yu. A. 1994. Numerical detection and continuation of codimension-two homoclinic bifurcations. Int. J. Bifur. Chaos Appl. Sci. Eng. 4, 4, 785--822.
[9]
Champneys, A. R., Kuznetsov, Yu. A., and Sandstede, B. 1996. A numerical toolbox for homoclinic bifurcation analysis. Int. J. Bifur. Chaos Appl. Sci. Eng. 6, 5, 867--887.
[10]
Demmel, J. W., Dieci, L., and Friedman, M. J. 2000. Computing connecting orbits via an improved algorithm for continuing invariant subspaces. SIAM J. Sci. Comput. 22, 1, 81--94.
[11]
Dhooge, A., Govaerts, W., and Kuznetsov, Yu. A. 2003. MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 2, 141--164.
[12]
Dieci, L. and Eirola, T. 1999. On smooth decompositions of matrices. SIAM J. Matrix Anal. Appl. 20, 3, 800--819.
[13]
Dieci, L. and Friedman, M. J. 2001. Continuation of invariant subspaces. Numer. Linear Algebra Appl. 8, 5, 317--327.
[14]
Doedel, E. J. and Friedman, M. J. 1989. Numerical computation of heteroclinic orbits. J. Comput. Appl. Math. 26, 1--2, 155--170.
[15]
Doedel, E. J., Friedman, M. J., and Monteiro, A. C. 1994. On locating connecting orbits. Appl. Math. Comput. 65, 1--3, 231--239.
[16]
Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Yu. A., Sandstede, B., and Wang, X.-J. 1997a. AUTO97: Continuation and bifurcation software for ordinary differential equations (with HomCont). http://indy.cs.concordia.ca/auto.
[17]
Doedel, E. J., Friedman, M. J., and Kunin, B. I. 1997b. Successive continuation for locating connecting orbits. Numer. Algor. 14, 1--3, 103--124.
[18]
Friedman, M., Govaerts, W., Kuznetsov, Yu. A., and Sautois, B. 2005. Continuation of homoclinic orbits in MATLAB. In Proceedings of the 5th International Conference on Computational Science, V. S. et al. Ed. Springer Verlag Lecture Notes in Computer Science Series, vol. 3514, ICCS, Atlanta, GA, 263--270.
[19]
Ghaziani, R. K., Govaerts, W., Kuznetsov, Yu. A., and Meijer, H. G. E. 2009. Numerical continuation of connecting orbits of maps in matlab. J. Diff. Equ. Appl. 15, 8--9, 849--875.
[20]
Glendinning, P. and Sparrow, C. 1986. T-points: A codimension two heteroclinic bifurcation. J. Stat. Phys. 43, 3--4, 479--488.
[21]
Govaerts, W. 2000. Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia, PA.
[22]
Govaerts, W.,De Witte, V., and Kheibarshekan, L. 2009. Using MATCONT in a two-parameter bifurcation study of models for cell cycle controls. In Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. IDETC/CIE, CA.
[23]
Gray, P. and Scott, S. K. 1990. Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics. Oxford University Press, Oxford, UK.
[24]
Guckenheimer, J. and Holmes, P. 1983. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York.
[25]
Kuznetsov, Yu. A. 2004. Elements of Applied Bifurcation Theory 3rd Ed. Springer, New York.
[26]
Kuznetsov, Yu. A. and Levitin, V. V. 1998. CONTENT: Integrated environment for analysis of dynamical systems, version 1.5. http://ftp.cwi.nl/CONTENT.
[27]
Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmospher. Sci. 20, 2, 130--141.
[28]
Petrovskaya, N. V. and Judovich, V. I. 1980. Homoclinic loops of the Salzman-Lorenz system. In Methods of Qualitative Theory of Differential Equations, Gorkii State University, Gorkii, 73--83 (In Russian).
[29]
Rinzel, J. and Ermentrout, G. B. 1989. Analysis of neural excitability and oscillations. In Methods in Neuronal Modeling: From Synapses to Networks, C. Koch and I. Segev Eds., MIT Press, Cambridge, MA, 135--169.
[30]
Tyson, J. J. and Novak, B. 2001. Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 2, 249--263.

Cited By

View all
  • (2024)Bifurcation Analysis of the Dynamics in COVID-19 Transmission through Living and Nonliving MediaJournal of Applied Mathematics10.1155/2024/56693082024(1-15)Online publication date: 22-Mar-2024
  • (2024)Routes to Chaos in a Three-Dimensional Cancer ModelRegular and Chaotic Dynamics10.1134/S156035472405001029:5(777-793)Online publication date: 2-Oct-2024
  • (2023)A double-zero bifurcation in a Lorenz-like systemNonlinear Dynamics10.1007/s11071-023-09130-1112:3(2305-2330)Online publication date: 17-Dec-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 38, Issue 3
April 2012
157 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/2168773
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 April 2012
Accepted: 01 September 2011
Revised: 01 September 2011
Received: 01 June 2010
Published in TOMS Volume 38, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Global bifurcation
  2. homotopy
  3. numerical continuation

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)25
  • Downloads (Last 6 weeks)7
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Bifurcation Analysis of the Dynamics in COVID-19 Transmission through Living and Nonliving MediaJournal of Applied Mathematics10.1155/2024/56693082024(1-15)Online publication date: 22-Mar-2024
  • (2024)Routes to Chaos in a Three-Dimensional Cancer ModelRegular and Chaotic Dynamics10.1134/S156035472405001029:5(777-793)Online publication date: 2-Oct-2024
  • (2023)A double-zero bifurcation in a Lorenz-like systemNonlinear Dynamics10.1007/s11071-023-09130-1112:3(2305-2330)Online publication date: 17-Dec-2023
  • (2022)A theoretical analysis of complex armed conflictsPLOS ONE10.1371/journal.pone.026441817:3(e0264418)Online publication date: 4-Mar-2022
  • (2022)Chaotic RG flow in tensor modelsPhysical Review D10.1103/PhysRevD.105.065021105:6Online publication date: 31-Mar-2022
  • (2022)On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillatorsChaos: An Interdisciplinary Journal of Nonlinear Science10.1063/5.009816332:9Online publication date: 8-Sep-2022
  • (2022)Embedding nonlinear systems with two or more harmonic phase terms near the Hopf–Hopf bifurcationNonlinear Dynamics10.1007/s11071-022-07906-5111:2(1537-1551)Online publication date: 29-Sep-2022
  • (2021)Bifurcations of Heteroclinic Contours in Two-Parameter Planar Systems: Overview and Explicit ExamplesInternational Journal of Bifurcation and Chaos10.1142/S021812742130036631:12(2130036)Online publication date: 25-Sep-2021
  • (2021)On bifurcations of Lorenz attractors in the Lyubimov–Zaks modelChaos: An Interdisciplinary Journal of Nonlinear Science10.1063/5.005858531:9Online publication date: 20-Sep-2021
  • (2021)Bifurcation set for a disregarded Bogdanov-Takens unfolding: Application to 3D cubic memristor oscillatorsNonlinear Dynamics10.1007/s11071-021-06352-z104:2(1657-1675)Online publication date: 5-Apr-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media