Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2024156.2024205acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Single view reflectance capture using multiplexed scattering and time-of-flight imaging

Published: 12 December 2011 Publication History

Abstract

This paper introduces the concept of time-of-flight reflectance estimation, and demonstrates a new technique that allows a camera to rapidly acquire reflectance properties of objects from a single view-point, over relatively long distances and without encircling equipment. We measure material properties by indirectly illuminating an object by a laser source, and observing its reflected light indirectly using a time-of-flight camera. The configuration collectively acquires dense angular, but low spatial sampling, within a limited solid angle range - all from a single viewpoint. Our ultra-fast imaging approach captures space-time "streak images" that can separate out different bounces of light based on path length. Entanglements arise in the streak images mixing signals from multiple paths if they have the same total path length. We show how reflectances can be recovered by solving for a linear system of equations and assuming parametric material models; fitting to lower dimensional reflectance models enables us to disentangle measurements.
We demonstrate proof-of-concept results of parametric reflectance models for homogeneous and discretized heterogeneous patches, both using simulation and experimental hardware. As compared to lengthy or highly calibrated BRDF acquisition techniques, we demonstrate a device that can rapidly, on the order of seconds, capture meaningful reflectance information. We expect hardware advances to improve the portability and speed of this device.

Supplementary Material

Supplemental material. (a171-naik.zip)

References

[1]
Ashikhmin, M. 2007. Distribution-based BRDFs. University of Utah -- Technical Report.
[2]
Ashikmin, M., Premože, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In ACM SIGGRAPH 2000 Papers, 65--74.
[3]
Bai, J., Chandraker, M., Ng, T.-T., and Ramamoorthi, R. 2010. A dual theory of inverse and forward light transport. In ECCV 2010, 1--8.
[4]
Cornell, 2001. Reflectance data. www.graphics.cornell.edu/online/measurements/reflectance.
[5]
Dana, K., van Ginneken, B., Nayar, S., and Koenderink, J. 1999. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics 18, 1, 1--34.
[6]
Degnan, J. J. 2002. Asynchronous laser transponders for precise interplanetary ranging and time transfer. Journal of Geodynamics 34, 3-4, 551--594.
[7]
Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., and Guo, B. 2010. Manifold bootstrapping for SVBRDF capture. In ACM SIGGRAPH 2010 papers, 98:1--98:10.
[8]
Dudley, J. M., Reid, D. T., Ebrahimzadeh, M., and Sibbett, W. 1994. Characterisics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator. Optics Communications 104, 4,5,6 (January), 419--430.
[9]
Forsyth, D., and Zisserman, A. 1990. Shape from shading in the light of mutual illumination. Image Vision Comput. 8 (February), 42--49.
[10]
Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. In ACM SIGGRAPH 2003 Papers, 749--758.
[11]
Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. A. 2006. Symmetric photography: Exploiting data-sparseness in reflectance fields. In Rendering Techniques 2006, 251--262.
[12]
Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Computer Graphics Forum 28, 4, 1161--1170.
[13]
Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2010. Circularly polarized spherical illumination reflectometry. In ACM SIGGRAPH Asia 2010 papers, 162:1--162:12.
[14]
Ghosh, A., Heidrich, W., Achutha, S., and O'Toole, M. 2010. A basis illumination approach to BRDF measurement. Int. J. Comput. Vision 90 (November), 183--197.
[15]
Goldman, D., Curless, B., Hertzmann, A., and Seitz, S. 2010. Shape and spatially-varying BRDFs from photometric stereo. IEEE PAMI 32, 6 (june), 1060--1071.
[16]
Han, J. Y., and Perlin, K. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. In ACM SIGGRAPH 2003 Papers, 741--748.
[17]
Hasinoff, S., Durand, F., and Freeman, W. 2010. Noise-optimal capture for high dynamic range photography. In CVPR 2010, 553--560.
[18]
Hawkins, T., Einarsson, P., and Debevec, P. E. 2005. A dual light stage. In Rendering Techniques, K. Bala and P. Dutre, Eds., 91--98.
[19]
Holroyd, M., Lawrence, J., Humphreys, G., and Zickler, T. 2008. A photometric approach for estimating normals and tangents. In ACM SIGGRAPH Asia 2008 papers, 133:1--133:9.
[20]
Jakob, W., 2010. Mitsuba physically-based renderer. www.mitsuba-renderer.org.
[21]
Kirmani, A., Hutchison, T., Davis, J., and Raskar, R. 2009. Looking around the corner using transient imaging. In ICCV 2009, 159--166.
[22]
Kuthirummal, S., and Nayar, S. K. 2006. Multiview radial catadioptric imaging for scene capture. In ACM SIGGRAPH 2006 Papers, 916--923.
[23]
Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. In ACM SIGGRAPH 2006 Papers, 735--745.
[24]
Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2001. Image-based reconstruction of spatially varying materials. In Eurographics Workshop on Rendering, 63--70.
[25]
Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Transactions on Graphics 22, 2, 234--257.
[26]
Liu, S., Ng, T., and Matsushita, Y. 2010. Shape from second-bounce of light transport. In ECCV 2010, 280--293.
[27]
Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Eurographics Symposium on Rendering, 183--194.
[28]
Marschner, S., Westin, S., Lafortune, E., Torrance, K., and Greenberg, D. 1999. Image-Based BRDF measurement including human skin. In Eurographics Workshop on Rendering, 139--152.
[29]
Mathworks. 2011. Matlab Optimization Toolbox User's Guide http://www.mathworks.com/help/pdf_doc/optim/optim_tb.pdf Last accessed 4-September-2011. 6-1--6-18.
[30]
Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. In ACM SIGGRAPH 2003 Papers, 759--769.
[31]
McAllister, D. 2002. A Generalized Surface Appearance Representation for Computer Graphics. PhD thesis, UNC Chapel Hill.
[32]
Nayar, S. K., Ikeuchi, K., and Kanade, T. 1991. Shape from interreflections. Int. J. Comput. Vision 6 (August), 173--195.
[33]
Nayar, S. K., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. In ACM SIGGRAPH 2006 Papers, 935--944.
[34]
Ngan, A., Durand, F., and Matusik, W. 2005. Experimental Analysis of BRDF Models. In Eurographics Symposium on Rendering, 117--226.
[35]
Nicodemus, F. E., Richmond, J. C., and Hsia, J. J. 1977. Geometrical considerations and reflectance. National Bureau of Standards, NBS Monograph 160 (October).
[36]
Rusinkiewicz, S. 1998. A new change of variables for efficient BRDF representation. In Eurographics Workshop on Rendering, 11--22.
[37]
Sato, Y., Wheeler, M., and Ikeuchi, K. 1997. Object shape and reflectance modeling from observation. In ACM SIGGRAPH 1997 papers, 379--387.
[38]
Schechner, Y., Nayar, S., and Belhumeur, P. 2007. Multiplexing for optimal lighting. IEEE PAMI 29, 8 (aug.), 1339--1354.
[39]
Seitz, S. M., Matsushita, Y., and Kutulakos, K. N. 2005. A theory of inverse light transport. In ICCV 2005, 1440--1447.
[40]
Sen, P., Chen, B., Garg, G., Marschner, S. R., Horowitz, M., Levoy, M., and Lensch, H. P. A. 2005. Dual photography. In ACM SIGGRAPH 2005 Papers, 745--755.
[41]
Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. In ACM SIGGRAPH 2008 papers, 41:1--41:9.
[42]
Wang, J., Dong, Y., Tong, X., Lin, Z., and Guo, B. 2009. Kernel nystrom method for light transport. In ACM SIGGRAPH 2009 papers, 29:1--29:10.
[43]
Warburton, R. E., McCarthy, A., Wallace, A. M., Hernandez-Marin, S., Hadfield, R. H., Nam, S. W., and Buller, G. S. 2007. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength. Opt. Lett. 32, 15 (Aug), 2266--2268.
[44]
Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In ACM SIGGRAPH 1992 papers, 265--272.
[45]
Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., and Debevec, P. 2005. Performance relighting and reflectance transformation with time-multiplexed illumination. In ACM SIGGRAPH 2005 Papers, 756--764.
[46]
Weyrich, T., Lawrence, J., Lensch, H. P. A., Rusinkiewicz, S., and Zickler, T. 2009. Principles of appearance acquisition and representation. Foundations and Trends in Computer Graphics and Vision 4, 2, 75--191.
[47]
Yu, Y., Debevec, P., Malik, J., and Hawkins, T. 1999. Inverse global illumination: recovering reflectance models of real scenes from photographs. In ACM SIGGRAPH 1999 papers, 215--224.
[48]
Zickler, T., Enrique, S., Ramamoorthi, R., and Belhumeur, P. 2005. Reflectance sharing: Image-based rendering from a sparse set of images. In Eurographics Symposium on Rendering, 253--264.

Cited By

View all
  • (2022)Differential Frequency Heterodyne Time-of-Flight Imaging for Instantaneous Depth and Velocity EstimationACM Transactions on Graphics10.1145/354693942:1(1-13)Online publication date: 14-Sep-2022
  • (2022)Non-line-of-sight transient renderingComputers & Graphics10.1016/j.cag.2022.07.003107(84-92)Online publication date: Oct-2022
  • (2021)Single-Frame Direct Reflectance Estimation With Indirect Time-of-Flight Cameras2021 24th Euromicro Conference on Digital System Design (DSD)10.1109/DSD53832.2021.00037(182-186)Online publication date: Sep-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SA '11: Proceedings of the 2011 SIGGRAPH Asia Conference
December 2011
730 pages
ISBN:9781450308076
DOI:10.1145/2024156
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 December 2011

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computational photography
  2. global illumination
  3. multipath light transport
  4. reflectance acquisition
  5. time of flight

Qualifiers

  • Research-article

Funding Sources

Conference

SA '11
Sponsor:
SA '11: SIGGRAPH Asia 2011
December 12 - 15, 2011
Hong Kong, China

Acceptance Rates

Overall Acceptance Rate 178 of 869 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)28
  • Downloads (Last 6 weeks)4
Reflects downloads up to 23 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Differential Frequency Heterodyne Time-of-Flight Imaging for Instantaneous Depth and Velocity EstimationACM Transactions on Graphics10.1145/354693942:1(1-13)Online publication date: 14-Sep-2022
  • (2022)Non-line-of-sight transient renderingComputers & Graphics10.1016/j.cag.2022.07.003107(84-92)Online publication date: Oct-2022
  • (2021)Single-Frame Direct Reflectance Estimation With Indirect Time-of-Flight Cameras2021 24th Euromicro Conference on Digital System Design (DSD)10.1109/DSD53832.2021.00037(182-186)Online publication date: Sep-2021
  • (2020)Towards Reflectometry from Interreflections2020 IEEE International Conference on Computational Photography (ICCP)10.1109/ICCP48838.2020.9105251(1-12)Online publication date: Apr-2020
  • (2018)Depth and Transient Imaging with Compressive SPAD Array Cameras2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition10.1109/CVPR.2018.00036(273-282)Online publication date: Jun-2018
  • (2017)Coherent inverse scattering via transmission matrices: Efficient phase retrieval algorithms and a public dataset2017 IEEE International Conference on Computational Photography (ICCP)10.1109/ICCPHOT.2017.7951483(1-16)Online publication date: May-2017
  • (2016)Non-line-of-sight imaging using active light fieldsImaging and Applied Optics 201610.1364/COSI.2016.CW3D.1(CW3D.1)Online publication date: 2016
  • (2016)Material Classification Using Raw Time-of-Flight Measurements2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR.2016.381(3503-3511)Online publication date: Jun-2016
  • (2016)Macroscopic Interferometry: Rethinking Depth Estimation with Frequency-Domain Time-of-Flight2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR.2016.103(893-902)Online publication date: Jun-2016
  • (2016)Surface reflectance estimation and segmentation from single depth image of ToF cameraImage Communication10.1016/j.image.2016.07.00647:C(452-462)Online publication date: 1-Sep-2016
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media