Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2043674.2043688acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicimcsConference Proceedingsconference-collections
research-article

An online video recommendation framework using rich information

Published: 05 August 2011 Publication History

Abstract

Automatic video recommendation is involved in an attempt to tackle the information-overload problem, aiming to present the personalized video list to the user. This paper presents a novel approach to improve the accuracy of the video recommendation by combining the content-based filtering (CBF) method and the collaborative filtering (CF) method. Multimodal information is utilized to calculate the similarity among different videos to overcome the sparseness problem by CF method. We conduct experiments on a dataset of more than 11,000 videos and the results demonstrate the feasibility and effectiveness of our approach.

References

[1]
Encyclopedia. http://en.wikipedia.org/wiki/YouTube/.
[2]
G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734--749, 2005.
[3]
S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran, and M. Aly. Video suggestion and discovery for youtube: taking random walks through the view graph. In Proceedings of the International Conference on World Wide Web, pages 895--904, 2008.
[4]
R. Burke. Hybrid web recommender systems. Lecture Notes in Computer Science, pages 377--408, 2007.
[5]
R. L. Cilibrasi and P. M. Vitányi. The google similarity distance. IEEE Transactions on Knowledge and Data Engineering, 19(3):370--385, 2007.
[6]
R. Datta, D. Joshi, J. Li, and J. Wang. Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys (CSUR), 40(2):5, 2008.
[7]
M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM Transactions on Information System, 22:143--177, 2004.
[8]
R. Hong, M. Wang, M. Xu, S. Yan, and T. Chua. Dynamic captioning: video accessibility enhancement for hearing impairment. In Proceedings of the ACM International Conference on Multimedia, pages 421--430, 2010.
[9]
F. Hopfgartner, D. Vallet, M. Halvey, and J. Jose. Search trails using user feedback to improve video search. In Proceedings of the ACM International Conference on Multimedia, pages 339--348, 2008.
[10]
K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information System, 20:422--446, 2002.
[11]
R. Jin, L. Si, and C. Zhai. Preference-based graphic models for collaborative filtering. Urbana, 51:61801.
[12]
R. Jin, L. Si, C. Zhai, and J. Callan. Collaborative filtering with decoupled models for preferences and ratings. In Proceedings of the International Conference on Information and Knowledge Management, pages 309--316, 2003.
[13]
Q. Li and B. Kim. An approach for combining content-based and collaborative filters. In Proceedings of the International Workshop on Information Retrieval with Asian Languages, pages 17--24, 2003.
[14]
H. Luo, J. Fan, and D. A. Keim. Personalized news video recommendation. In Proceedings of the ACM International Conference on Multimedia, pages 1001--1002, 2008.
[15]
T. Mei, B. Yang, X.-S. Hua, L. Yang, S.-Q. Yang, and S. Li. Videoreach: an online video recommendation system. In Proceedings of ACM SIGIR conference on Research and development in information retrieval, pages 767--768, 2007.
[16]
J. Park, S.-J. Lee, S.-J. Lee, K. Kim, B.-S. Chung, and Y.-K. Lee. Online video recommendation through tag-cloud aggregation. IEEE Transactions on Multimedia, 18(1):78--87, 2011.
[17]
S. Robertson and S. Walker. Threshold setting in adaptive filtering. Journal of Documentation, 56(3):312--331, 2000.
[18]
B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the International Conference on World Wide Web, pages 285--295, 2001.
[19]
M. van Setten, M. Veenstra, A. Nijholt, and B. van Dijk. Prediction strategies in a TV recommender system-method and experiments. In Proceedings of the International Conference on World Wide Web, pages 203--210, 2003.
[20]
M. Wang, X. Hua, R. Hong, J. Tang, G. Qi, and Y. Song. Unified video annotation via multigraph learning. IEEE Transactions on Circuits and Systems for Video Technology, 19(5):733--746, 2009.
[21]
M. Wang, X. Hua, J. Tang, and R. Hong. Beyond distance measurement: constructing neighborhood similarity for video annotation. IEEE Transactions on Multimedia, 11(3):465--476, 2009.
[22]
M. Wang, K. Yang, X. Hua, and H. Zhang. Towards a relevant and diverse search of social images. IEEE Transactions on Multimedia, 12(8):829--842, 2010.
[23]
J. Yuan, Z. Zha, Z. Zhao, X. Zhou, and T. Chua. Utilizing related samples to learn complex queries in interactive concept-based video search. In Proceedings of the ACM International Conference on Image and Video Retrieval, pages 66--73, 2010.
[24]
Z. Zha, X. Hua, T. Mei, J. Wang, G. Qi, and Z. Wang. Joint multi-label multi-instance learning for image classification. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 1--8, 2008.
[25]
Z. Zha, L. Yang, T. Mei, M. Wang, and Z. Wang. Visual query suggestion. In Proceedings of the ACM International Conference on Multimedia, pages 15--24, 2009.

Cited By

View all
  • (2013)Towards semantic and affective content-based video recommendation2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)10.1109/ICMEW.2013.6618331(1-6)Online publication date: Jul-2013
  • (2013)Video recommendation over multiple information sourcesMultimedia Systems10.1007/s00530-012-0267-z19:1(3-15)Online publication date: 1-Feb-2013

Index Terms

  1. An online video recommendation framework using rich information

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      ICIMCS '11: Proceedings of the Third International Conference on Internet Multimedia Computing and Service
      August 2011
      208 pages
      ISBN:9781450309189
      DOI:10.1145/2043674
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      • Sichuan University
      • Chinese Academy of Sciences
      • SCF: Sichuan Computer Federation
      • Southwest Jiaotong University
      • Beijing ACM SIGMM Chapter

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 05 August 2011

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. multimodal similarity
      2. online video recommendation
      3. viewing history

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      ICIMCS '11
      Sponsor:
      • SCF

      Acceptance Rates

      Overall Acceptance Rate 163 of 456 submissions, 36%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)2
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 23 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2013)Towards semantic and affective content-based video recommendation2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)10.1109/ICMEW.2013.6618331(1-6)Online publication date: Jul-2013
      • (2013)Video recommendation over multiple information sourcesMultimedia Systems10.1007/s00530-012-0267-z19:1(3-15)Online publication date: 1-Feb-2013

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media