Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1973009.1973038acmconferencesArticle/Chapter ViewAbstractPublication PagesglsvlsiConference Proceedingsconference-collections
research-article

A new balanced 4-moduli set {2k, 2n - 1, 2n + 1, 2n+1-1} and its reverse converter design for efficient fir filter implementation

Published: 02 May 2011 Publication History

Abstract

This paper presents a new four moduli residue number system of the form {2k, 2n-1, 2n+1-1}, n d k d 2n, which is an enhancement of the popular four-moduli set {2n,2n-1,2n,2n+1-1} (for even n). Our k-mod4 moduli set achieves a higher dynamic range and a better balancing of the binary channels. Using the proposed k-mod4 moduli set helps in reducing the hardware complexity of arithmetic circuits compared with other four-moduli sets for the same performance. Additionally, we provide a reverse converter design, whose hardware complexity and performance are shown to be better than the existing reverse converters for the same dynamic range. Experimental results comparing RNS multiply and accumulate units implemented using the proposed four-moduli set with the state-of-the-art balanced four-moduli sets, show large improvements in area (46%) and power (43%) reduction for various dynamic ranges. This makes our k-mod4 moduli set ideal for digital filters implementation.

References

[1]
B. Cao, C. H. Chang, and T. Srikanthan. An Efficient Reverse Converter for 4-moduli Set f2n À 1; 2n; 2n + 1; 22n + 1g Based on New Chinese Remainder Theorem. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 50:1296--1303, 2003.
[2]
B. Cao, T. Srikantham, and C. H. Chang. Efficient Reverse Converters for Four-moduli Sets f2n 1; 2n; 2n + 1; 2n+1 1g and f2n 1; 2n; 2n + 1; 2n1 1g. IEE Proc. Comput. Digit. Tech., 152:687--696, 2005.
[3]
R. Chaves and L. Sousa. f2n 1; 2n+k; 2n + 1g: A New RNS Moduli Set Extension. In Proc. DSD, pages 210--217, 2004.
[4]
R. Chokshi, K. S. Berezowski, A. Shrivatsava, and S. J. Piestrak. Exploiting Residue Number System for Power-Efficient Digital Signal Processing in Embedded Processors. In Proc. CASES, pages 19--27, 2009.
[5]
A. Hiasat and H. S. Abdel-Aty-Zohdy. Residue-to-binary Arithmetic Converter for the Moduli Set (2k; 2k 1; 2k1 1). IEEE Trans. Circuits Syst. II, 45:204--208, 1998.
[6]
P. V. Ananda Mohan and A. B. Premkumar. RNS-to-Binary Converters for Two Four-Moduli sets f2n 1; 2n; 2n + 1; 2n+1 1g and f2n 1; 2n; 2n + 1; 2n+1 + 1g. IEEE Trans. Trans. Circuits Syst. I, 54(6):1245--1254, 2006.
[7]
A. S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei, and S. Timarchi. Efficient Reverse Converter Designs for the New 4-Moduli Sets f2n 1; 2n; 2n + 1; 22n+1 1g and f2n 1; 2n + 1; 22n; 22n + 1g Based on New CRTs. IEEE Trans. Circuits Syst. I, 57:823--835, 2010.
[8]
S. J. Piestrak. Design of Residue Generators and Multioperand Modulo Adders using Carry-save Adders. IEEE Trans. Computers, 43:68--77, 1994.
[9]
F. Pourbigharaz and H. M. Yassine. A Signed-digit Architecture for Residue to Binary Transformation. IEEE Trans. Comput, 46:1146--1150, 1997.
[10]
A. B. Premkumar, E. L. Ang, and E. M.-K. Lai. Improved Memoryless RNS Forward Converter Based on the Periodicity of Residues. IEEE Trans. Circuits Syst. II, 53:133--137, 2006.
[11]
B. Premkumar. An RNS to Binary Converter in 2n+1; 2n; 2n-1 Moduli Set. IEEE Trans. Circuits Syst. II, 39:480--482, 1992.
[12]
Ming-Hwa Sheu, Su-Hon Lin, Yung-Tai Chen, and Yu-Chun Chang. High-Speed and Reduced-Area RNS Forward Converter Based on (2n 1; 2n; 2n + 1). In Proc. APCCS, pages 821--824, 2004.
[13]
M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor. Residue Number System Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press, Newyork, 1986.
[14]
W. Wang, M. N. S. Swamy, M. O. Ahmad, and Y. Wang. A Parallel Residue-to-binary Converter. In IEEE Inte. Conf. Acoustics, Speech, and Signal Processing, 1999.
[15]
R. Zimmermann. Efficient VLSI Implementation of Modulo (2n + 1) Addition and Multiplication. In Proc. ISCA, pages 158--167, 1999.

Cited By

View all
  • (2023)Design of reverse converters for the general RNS 3-moduli set {2k, 2n − 1, 2n + 1}EURASIP Journal on Advances in Signal Processing10.1186/s13634-023-01037-82023:1Online publication date: 4-Sep-2023
  • (2023)Residue to binary converter for the extended four moduli set {2k, 2n−1, 2n+1, 2n+1+1} for n oddSādhanā10.1007/s12046-023-02118-y48:2Online publication date: 15-Apr-2023
  • (2018)Reverse Converters for the Moduli Set {$$2^{n}, 2^{n-1}-1,2^{n}-1, 2^{n+1}-1\}(n\,\hbox {Even})$$2n,2n-1-1,2n-1,2n+1-1}(nEven)Circuits, Systems, and Signal Processing10.1007/s00034-017-0725-037:8(3605-3634)Online publication date: 1-Aug-2018
  • Show More Cited By

Index Terms

  1. A new balanced 4-moduli set {2k, 2n - 1, 2n + 1, 2n+1-1} and its reverse converter design for efficient fir filter implementation

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GLSVLSI '11: Proceedings of the 21st edition of the great lakes symposium on Great lakes symposium on VLSI
    May 2011
    496 pages
    ISBN:9781450306676
    DOI:10.1145/1973009
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    In-Cooperation

    • IEEE CEDA
    • IEEE CASS

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 02 May 2011

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 4-moduli set
    2. RNS
    3. high speed FIR filter
    4. reverse converter design

    Qualifiers

    • Research-article

    Conference

    GLSVLSI '11
    Sponsor:
    GLSVLSI '11: Great Lakes Symposium on VLSI 2011
    May 2 - 4, 2011
    Lausanne, Switzerland

    Acceptance Rates

    Overall Acceptance Rate 312 of 1,156 submissions, 27%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Design of reverse converters for the general RNS 3-moduli set {2k, 2n − 1, 2n + 1}EURASIP Journal on Advances in Signal Processing10.1186/s13634-023-01037-82023:1Online publication date: 4-Sep-2023
    • (2023)Residue to binary converter for the extended four moduli set {2k, 2n−1, 2n+1, 2n+1+1} for n oddSādhanā10.1007/s12046-023-02118-y48:2Online publication date: 15-Apr-2023
    • (2018)Reverse Converters for the Moduli Set {$$2^{n}, 2^{n-1}-1,2^{n}-1, 2^{n+1}-1\}(n\,\hbox {Even})$$2n,2n-1-1,2n-1,2n+1-1}(nEven)Circuits, Systems, and Signal Processing10.1007/s00034-017-0725-037:8(3605-3634)Online publication date: 1-Aug-2018
    • (2017)Design of Reverse Converters for a New Flexible RNS Five-Moduli Set $$\{ 2^k, 2^n-1, 2^n+1, 2^{n+1}-1, 2^{n-1}-1 \}$${2k,2n-1,2n+1,2n+1-1,2n-1-1} (n Even)Circuits, Systems, and Signal Processing10.1007/s00034-017-0530-936:11(4593-4614)Online publication date: 1-Nov-2017
    • (2016)RNS to Binary ConversionResidue Number Systems10.1007/978-3-319-41385-3_5(81-132)Online publication date: 15-Oct-2016
    • (2015) Efficient architectures for modulo 2 n  − 2 arithmetic units International Journal of Electronics10.1080/00207217.2015.1020528102:12(2062-2074)Online publication date: 10-Mar-2015
    • (2014) A ROM‐less reverse RNS converter for moduli set {2 q ± 1, 2 q ± 3} IET Computers & Digital Techniques10.1049/iet-cdt.2012.01488:1(11-22)Online publication date: Jan-2014
    • (2013)Efficient Reverse Converter Design for New Adaptable Four-Moduli Set {2n+k, 2n + 1, 2n - 1, 22n + 1}IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences10.1587/transfun.E96.A.1571E96.A:7(1571-1578)Online publication date: 2013

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media