Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1958746.1958773acmconferencesArticle/Chapter ViewAbstractPublication PagesicpeConference Proceedingsconference-collections
abstract

Adaptive run-time performance optimization through scalable client request rate control

Published: 30 September 2011 Publication History

Abstract

Today's Internet-scale computing systems often run at a low average load with only occasional peak performance demands. Consequently, computing resources are often overdimensioned, leading to high costs. While load control techniques between clients and servers can help to better utilize a given system, these techniques can place a significant communication and computation load on servers. To improve on these issues, we contribute with scalable techniques for client-request rate control, achieved through integration of (i) a scalable distributed feedback channel to transmit control information from the server to the clients with (ii) decoupling strategies that allow to constrain and filter client requests directly at the client, illustrated in the area of first-price sealed-bid online auctions, and (iii) a PID (Proportional-Integral-Derivative) controller that adaptively controls the input parameters of those decoupling strategies to facilitate an optimal server utilization. In contrast to related work, we can hence optimize server load directly at the source through rate control of the clients. Our evaluations show that this setup supports large sets of clients before the controller becomes unstable.

References

[1]
T. F. Abdelzaher, K. G. Shin, and N. T. Bhatti. Performance guarantees for web server end-systems: A control-theoretical approach. IEEE Trans. Parallel Distrib. Syst., 13(1):80--96, 2002.
[2]
M. Andersson, J. Cao, M. Kihl, and C. Nyberg. Admission control with service level agreements for a web server. In M. H. Hamza, editor, EuroIMSA, pages 275--280. IASTED/ACTA Press, 2005.
[3]
E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and scalability of ejb applications. In OOPSLA, pages 246--261, 2002.
[4]
K. H. Chan and X. Chu. Design of a fuzzy PI controller to guarantee proportional delay differentiation on web servers. In M.-Y. Kao and X.-Y. Li, editors, AAIM, volume 4508 of Lecture Notes in Computer Science, pages 389--398. Springer, 2007.
[5]
D. Dyachuk and R. Deters. Transparent admission control and scheduling of e-commerce web services. In J. Filipe and J. A. M. Cordeiro, editors, WEBIST (Selected Papers), volume 8 of Lecture Notes in Business Information Processing, pages 124--136. Springer, 2007.
[6]
L. Froihofer and K. M. Goeschka. Balancing of dependability and security in online auctions. In 38th Int. Conference on Dependable Systems and Networks (DSN’08) (Supplementary volume), 2008.
[7]
M. Goldstein, O. Shehory, R. Tzoref-Brill, and S. Ur. Improving throughput via slowdowns. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 2, ICSE '10, pages 11--20, New York, NY, USA, 2010. ACM.
[8]
T. Hägglund and K. J. Åström. Revisiting the Ziegler-Nichols tuning rules for PI control. Asian Journal of Control, 4(4):364--380, Dec. 2002.
[9]
M. Hauswirth and M. Jazayeri. A component and communication model for push systems. In O. Nierstrasz and M. Lemoine, editors, ESEC / SIGSOFT FSE, volume 1687 of Lecture Notes in Computer Science, pages 20--38. Springer, 1999.
[10]
J. O. Henriksen, R. M. O'Keefe, C. D. Pegden, R. G. Sargent, and B. W. Unger. Implementations of time (panel). In D. W. Jones, editor, WSC '86: Proceedings of the 18th conference on Winter simulation, pages 409--416, New York, NY, USA, 1986. ACM.
[11]
M. Kihl, A. Robertsson, A. Andersson, and B. Wittenmark. Control-theoretic analysis of admission control mechanisms for web server systems. World Wide Web, 11(1):93--116, 2008.
[12]
M. M. Kokar, K. Baclawski, and Y. A. Eracar. Control theory-based foundations of self-controlling software. IEEE Intelligent Systems, 14(3):37--45, 1999.
[13]
S. S. Lim, C. Lee, C. W. Ahn, C. G. Lee, and K. H. Park. An adaptive admission control mechanism for a cluster-based web server system. In IPDPS. IEEE Computer Society, 2002.
[14]
C.-H. Lung and O. W. W. Yang. Evaluation of an adaptive PI rate controller for congestion control in wireless ad-hoc/sensor networks. In CSE (2), pages 597--602. IEEE Computer Society, 2009.
[15]
R. P. McAfee and J. McMillan. Auctions and bidding. Journal of Economic Literature, 25(2):699--738, June 1987.
[16]
P. J. Meulenhoff, D. R. Ostendorf, M. Zivkovic, H. B. Meeuwissen, and B. M. M. Gijsen. Intelligent overload control for composite web services. In L. Baresi, C.-H. Chi, and J. Suzuki, editors, ICSOC/ServiceWave, volume 5900 of Lecture Notes in Computer Science, pages 34--49, 2009.
[17]
S. Mogaki, M. Kamada, T. Yonekura, S. Okamoto, Y. Ohtaki, and M. B. I. Reaz. Time-stamp service makes real-time gaming cheat-free. In G. J. Armitage, editor, NETGAMES, pages 135--138. ACM, 2007.
[18]
A. Mondal and A. Kuzmanovic. Removing exponential backoff from TCP. Computer Communication Review, 38(5):17--28, 2008.
[19]
V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC 2988 (Proposed Standard), Nov. 2000.
[20]
J. Philippe, N. D. Palma, F. Boyer, and O. Gruber. Self-adapting service level in java enterprise edition. In Middleware 2009, volume 5896 of Lecture Notes in Computer Science, pages 143--162. Springer Berlin / Heidelberg, 2009.
[21]
J. Postel. Transmission Control Protocol. RFC 793 (Standard), Sept. 1981. Updated by RFCs 1122, 3168.
[22]
P. Sourdille and A. O’Dwyer. A new modified smith predictor design. In ISICT, volume 49 of ACM International Conference Proceeding Series, pages 385--390. Trinity College Dublin, 2003.
[23]
P. B. Srinivas, S. Ramanathan, and S. Singhal. Web2K: Bringing QoS to web servers. (HPL-2000--61), 2000. http://www.hpl.hp.com/techreports/2000/HPL-2000--61.pdf.
[24]
G. Starnberger, L. Froihofer, and K. M. Goeschka. Using smart cards for tamper-proof timestamps on untrusted clients. In Availability, Reliability and Security, 2010. ARES '10. International Conference on, Kraków, Feb. 2010.
[25]
Transaction Processing Performance Council. TPC Benchmark#8482; W (Web Commerce), 2002. http://www.tpc.org/tpcw/.
[26]
T. Voigt and P. Gunningberg. Adaptive resource-based web server admission control. In ISCC, pages 219--224. IEEE Computer Society, 2002.
[27]
T. Voigt and P. Gunningberg. Handling multiple bottlenecks in web servers using adaptive inbound controls. In G. Carle and M. Zitterbart, editors, Protocols for High-Speed Networks, volume 2334 of Lecture Notes in Computer Science, pages 50--68. Springer, 2002.
[28]
C. K. Yeo, B. S. Lee, and M. H. Er. A survey of application level multicast techniques. Computer Communications, 27(15):1547--1568, 2004.
[29]
J. G. Ziegler and N. B. Nichols. Optimum settings for automatic controllers. Transactions of the ASME, 64:759--768, 1942.
[30]
H. Ziyuan, Z. Lanlan, and F. Minrui. Robust auto tune smith predictor controller design for plant with large delay. In K. Li, M. Fei, G. W. Irwin, and S. Ma, editors, LSMS (1), volume 4688 of Lecture Notes in Computer Science, pages 666--678. Springer, 2007.

Cited By

View all
  • (2015)A fine-grained flow control model for cloud-assisted data broadcastingProceedings of the 18th Symposium on Communications & Networking10.5555/2872550.2872554(24-31)Online publication date: 12-Apr-2015
  • (2011)Experience reportProceedings of the 11th IFIP WG 6.1 international conference on Distributed applications and interoperable systems10.5555/2022090.2022108(228-242)Online publication date: 6-Jun-2011

Index Terms

  1. Adaptive run-time performance optimization through scalable client request rate control

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ICPE '11: Proceedings of the 2nd ACM/SPEC International Conference on Performance engineering
    March 2011
    470 pages
    ISBN:9781450305198
    DOI:10.1145/1958746

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 September 2011

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Abstract

    Conference

    ICPE'11

    Acceptance Rates

    Overall Acceptance Rate 252 of 851 submissions, 30%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 18 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2015)A fine-grained flow control model for cloud-assisted data broadcastingProceedings of the 18th Symposium on Communications & Networking10.5555/2872550.2872554(24-31)Online publication date: 12-Apr-2015
    • (2011)Experience reportProceedings of the 11th IFIP WG 6.1 international conference on Distributed applications and interoperable systems10.5555/2022090.2022108(228-242)Online publication date: 6-Jun-2011

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media