Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1833280.1833285acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Towards subspace clustering on dynamic data: an incremental version of PreDeCon

Published: 25 July 2010 Publication History

Abstract

Todays data are high dimensional and dynamic, thus clustering over such kind of data is rather complicated. To deal with the high dimensionality problem, the subspace clustering research area has lately emerged that aims at finding clusters in subspaces of the original feature space. So far, the subspace clustering methods are mainly static and thus, cannot address the dynamic nature of modern data. In this paper, we propose an incremental version of the density based projected clustering algorithm PreDeCon, called incPreDeCon. The proposed algorithm efficiently updates only those subspace clusters that might be affected due to the population update.

References

[1]
C. C. Aggarwal. On change diagnosis in evolving data streams. IEEE Transactions on Knowledge and Data Engineering, 17(5):587--600, 2005.
[2]
C. C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for clustering evolving data streams. In VLDB, pages 81--92, 2003.
[3]
C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for projected clustering of high dimensional data streams. In VLDB, pages 852--863, 2004.
[4]
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 27(2):94--105, 1998.
[5]
M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering points to identify the clustering structure. In SIGMOD, pages 49--60, 1999.
[6]
C. Bohm, K. Kailing, H.-P. Kriegel, and P. Kröger. Density connected clustering with local subspace preferences. In ICDM, pages 27--34, 2004.
[7]
M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic information retrieval. SIAM Journal on Computing, 33(6):1417--1440, 2004.
[8]
C.-Y. Chen, S.-C. Hwang, and Y.-J. Oyang. An incremental hierarchical data clustering algorithm based on gravity theory. In PAKDD, pages 237--250, 2002.
[9]
M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering for mining in a data warehousing environment. In VLDB, pages 323--333, 1998.
[10]
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226--231, 1996.
[11]
V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon: Mining and monitoring evolving data. IEEE Transactions on Knowledge and Data Engineering, 13(1):50--63, 2001.
[12]
J. Gao, J. Li, Z. Zhang, and P.-N. Tan. An incremental data stream clustering algorithm based on dense units detection. In PAKDD, pages 420--425, 2005.
[13]
M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data streams: you only get one look a tutorial. In SIGMOD, pages 635--635, 2002.
[14]
S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515--528, 2003.
[15]
J. Han and M. Kamber. Data mining: concepts and techniques. Morgan Kaufmann Publishers Inc., 2000.
[16]
A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computer Surveys, 31(3):264--323, 1999.
[17]
H.-P. Kriegel, P. Kröger, and I. Gotlibovich. Incremental optics: Efficient computation of updates in a hierarchical cluster ordering. In DaWaK, pages 224--233, 2003.
[18]
H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. IEEE Transactions on Knowledge and Data Engineering, 3(1):1--58, 2009.
[19]
H. Yang, S. Parthasarathy, and S. Mehta. A generalized framework for mining spatio-temporal patterns in scientific data. In KDD, pages 716--721, 2005.
[20]
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: A new data clustering algorithm and its applications. Data Mining and Knowledge Discovery, 1(2):141--182, 1997.

Cited By

View all
  • (2023)Clustering in StreamsMachine Learning for Data Science Handbook10.1007/978-3-031-24628-9_13(271-300)Online publication date: 26-Feb-2023
  • (2022)Dynamic Sparse Subspace Clustering for Evolving High-Dimensional Data StreamsIEEE Transactions on Cybernetics10.1109/TCYB.2020.302397352:6(4173-4186)Online publication date: Jun-2022
  • (2020)Detecting Arbitrarily Oriented Subspace Clusters in Data Streams Using Hough TransformAdvances in Knowledge Discovery and Data Mining10.1007/978-3-030-47426-3_28(356-368)Online publication date: 6-May-2020
  • Show More Cited By

Index Terms

  1. Towards subspace clustering on dynamic data: an incremental version of PreDeCon

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    StreamKDD '10: Proceedings of the First International Workshop on Novel Data Stream Pattern Mining Techniques
    July 2010
    66 pages
    ISBN:9781450302265
    DOI:10.1145/1833280
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 25 July 2010

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article

    Conference

    KDD '10
    Sponsor:

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 20 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Clustering in StreamsMachine Learning for Data Science Handbook10.1007/978-3-031-24628-9_13(271-300)Online publication date: 26-Feb-2023
    • (2022)Dynamic Sparse Subspace Clustering for Evolving High-Dimensional Data StreamsIEEE Transactions on Cybernetics10.1109/TCYB.2020.302397352:6(4173-4186)Online publication date: Jun-2022
    • (2020)Detecting Arbitrarily Oriented Subspace Clusters in Data Streams Using Hough TransformAdvances in Knowledge Discovery and Data Mining10.1007/978-3-030-47426-3_28(356-368)Online publication date: 6-May-2020
    • (2015)Subspace clustering of data streamsJournal of Intelligent Information Systems10.1007/s10844-014-0319-245:3(319-335)Online publication date: 1-Dec-2015
    • (2013)Effective Evaluation Measures for Subspace Clustering of Data StreamsRevised Selected Papers of PAKDD 2013 International Workshops on Trends and Applications in Knowledge Discovery and Data Mining - Volume 786710.1007/978-3-642-40319-4_30(342-353)Online publication date: 14-Apr-2013
    • (2012)Data Stream Subspace Clustering for Anomalous Network Packet DetectionJournal of Information Security10.4236/jis.2012.3302703:03(215-223)Online publication date: 2012
    • (2012)Density-Based projected clustering of data streamsProceedings of the 6th international conference on Scalable Uncertainty Management10.1007/978-3-642-33362-0_24(311-324)Online publication date: 17-Sep-2012
    • (2011)Density based subspace clustering over dynamic dataProceedings of the 23rd international conference on Scientific and statistical database management10.5555/2032397.2032428(387-404)Online publication date: 20-Jul-2011
    • (2011)Novel data stream pattern mining report on the StreamKDD'10 workshopACM SIGKDD Explorations Newsletter10.1145/1964897.196491212:2(54-55)Online publication date: 31-Mar-2011
    • (2011)Density Based Subspace Clustering over Dynamic DataScientific and Statistical Database Management10.1007/978-3-642-22351-8_24(387-404)Online publication date: 2011

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media