Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

An exploration of climate data using complex networks

Published: 09 November 2010 Publication History

Abstract

Climate change is a pressing focus of research, social and economic concern, and political attention. According to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), increased frequency of extreme events will only intensify the occurrence of natural hazards, affecting global population, health, and economies. It is of keen interest to identify "regions" of similar climatological behavior to discover spatial relationships in climate variables, including long-range teleconnections. To that end, we consider a complex networks-based representation of climate data. Cross correlation is used to weight network edges, thus respecting the temporal nature of the data, and a community detection algorithm identifies multivariate clusters. Examining networks for consecutive periods allows us to study structural changes over time. We show that communities have a climatological interpretation and that disturbances in structure can be an indicator of climate events (or lackthereof). Finally, we discuss how this model can be applied for the discovery of more complex concepts such as unknown teleconnections or the development of multivariate climate indices and predictive insights.

References

[1]
S. Asur, D. Ucar, S. Parthasarathy. An ensemble framework for clustering protein-protein interaction graphs. Bioinformatics, 23(13), 29--40, 2007.
[2]
A. Clauset, C. Moore, M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks. Nature, 453, 98--101, 2008.
[3]
F. Congbin, J. Fletcher. Large signals of climatic variation over the ocean in the asian monsoon region. Adv. Atmos. Sci., 5(4): 389--404, 1988.
[4]
L. Ertöz, M. Steinbach, V. Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High- Dimensional Data. SIAM Data Mining, 47--58, 2003.
[5]
R. G. Fovell, M.-Y. C. Fovell. Climate Zones of the Conterminous United States Defined Using Cluster Analysis. J. Climate, 6(11): 2103--2135, 1993.
[6]
S. Gadgil, J. Srinivasan, R. S. Nanjundiah. On Forecasting the Indian Summer Monsoon. Curr. Sci. India, 84(4): 394--403, 2002.
[7]
W. W. Hargrove, F. M. Hoffman. Using Multivariate Clustering to Characterize Ecoregion Borders. Comput. Sci. Eng., 1(4): 18--25, 1999.
[8]
J. Hopcroft, O. Khan, B. Kulis, et al. Tracking evolving communities in large linked networks. PNAS, 101(1): 5249--5253, 2004.
[9]
J. E. Janowiak, A. Gruber, C. Kondragunta, et al. A Comparison of NCEP-NCAR Reanalysis Precipitationand GPCP Rain-Gauge Satellite Combined Dataset. J. Climate, 11(11): 2960--2979, 1998.
[10]
E. Kalnay, M. Kanamitsu, R. Kistler, et al. The NCEP/NCAR 40-Year Reanalysis Project. B. Am. Meteorol. Soc., 77(3): 437--471, 1996.
[11]
B. Karrer, E. Levina, M. E. J. Newman. Robustness of community structure in networks. Phys. Rev. E, 77, 046119, 2008.
[12]
S. Khan, S. Bandyopadhyay, A. R. Ganguly, et al. Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data. Phys. Rev. E, 76(2), 026209, 2007.
[13]
S. Khan, A. R. Ganguly, et al. Nonliear statistics reveals stronger ties between ENSO and the tropical hydrological cycle. Geophys. Res. Lett., 33, L24402, 2006.
[14]
M. Kottek, M. J. Grieser, C. Beck, et al. World Map of the K oppen-Geiger climate classification updated. Meteorol. Z., 15: 259--263, 2006.
[15]
M. E. J. Newman, M. Girvan. Finding and evaluating community structure in networks. Phys. Rev. E, 69, 026113, 2004.
[16]
P. Pons, M. Latapy. Computing communities in large networks using random walks. J. Graph Alg. App., 10(2): 191--218, 2006.
[17]
M. N. M. Sap, A. M. Awan. Finding Spatio-Temporal Patterns in Climate Data Using Clustering. IEEE Cyberworlds, 164--171, 2005.
[18]
M. Steinbach, P.-N. Tan, V. Kumar, et al. Discovery of Climate Indices Using Clustering. ACM SIGKDD, 446--455, 2003.
[19]
A. A. Tsonis, K. Swanson. Topology and Predictability of El Niño and La Niña Networks. Phys. Rev. Lett., 228502, 2008.
[20]
A. A. Tsonis, K. Swanson, S. Kravtsov. A new dynamical mechanism for major climate shifts. Geophys. Res. Lett., 34, L13705, 2007.
[21]
A.A. Tsonis. Introducing Networks in Climate Studies. Nonlinear Dynamics in Geosciences, Springer, 2007.
[22]
K. Wyrtki. Teleconnections in the Equatorial Pacific Ocean. Science, 6(180): 66--68, 1970.
[23]
K. Yamasaki, A. Gozolchiani, S. Havlin. Climate Networks around the Globe are Significantly Affected by El Niño. Phys. Rev. Lett., 228501, 2008.
[24]
http://cdiac.ornl.gov/climate/indices/indices table.html
[25]
http://www.cgd.ucar.edu/cas/catalog/climind/
[26]
http://www.cdc.noaa.gov/data/gridded/data.ncep.reanalysis.html

Cited By

View all
  • (2022)Climate NetworksNew Prospects in Environmental Geosciences and Hydrogeosciences10.1007/978-3-030-72543-3_1(3-5)Online publication date: 28-Jan-2022
  • (2021)Evolving climate network perspectives on global surface air temperature effects of ENSO and strong volcanic eruptionsThe European Physical Journal Special Topics10.1140/epjs/s11734-021-00269-9230:14-15(3075-3100)Online publication date: 16-Aug-2021
  • (2021)Topological clustering of multilayer networksProceedings of the National Academy of Sciences10.1073/pnas.2019994118118:21Online publication date: 18-May-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM SIGKDD Explorations Newsletter
ACM SIGKDD Explorations Newsletter  Volume 12, Issue 1
June 2010
77 pages
ISSN:1931-0145
EISSN:1931-0153
DOI:10.1145/1882471
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 November 2010
Published in SIGKDD Volume 12, Issue 1

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Climate NetworksNew Prospects in Environmental Geosciences and Hydrogeosciences10.1007/978-3-030-72543-3_1(3-5)Online publication date: 28-Jan-2022
  • (2021)Evolving climate network perspectives on global surface air temperature effects of ENSO and strong volcanic eruptionsThe European Physical Journal Special Topics10.1140/epjs/s11734-021-00269-9230:14-15(3075-3100)Online publication date: 16-Aug-2021
  • (2021)Topological clustering of multilayer networksProceedings of the National Academy of Sciences10.1073/pnas.2019994118118:21Online publication date: 18-May-2021
  • (2021)Inferring ecosystem networks as information flowsScientific Reports10.1038/s41598-021-86476-911:1Online publication date: 29-Mar-2021
  • (2021)Statistical physics approaches to the complex Earth systemPhysics Reports10.1016/j.physrep.2020.09.005896(1-84)Online publication date: Feb-2021
  • (2021)Correlation networks of air particulate matter ($$\hbox {PM}_{2.5}$$): a comparative studyApplied Network Science10.1007/s41109-021-00373-86:1Online publication date: 23-Apr-2021
  • (2020)Exploring the Clustering Property and Network Structure of a Large-Scale Basin’s Precipitation Network: A Complex Network ApproachWater10.3390/w1206173912:6(1739)Online publication date: 18-Jun-2020
  • (2020)A Qualitative Study on the United States Internet of Energy: A Step Towards Computational SustainabilityIEEE Access10.1109/ACCESS.2020.29863178(69003-69037)Online publication date: 2020
  • (2020)Modeling and analysis of the ocean dynamic with Gaussian complex networkChinese Physics B10.1088/1674-1056/aba27d29:10(108901)Online publication date: 28-Sep-2020
  • (2020)Spatiotemporal Characteristics and Propagation of Summer Extreme Precipitation Events Over United States: A Complex Network AnalysisGeophysical Research Letters10.1029/2020GL08818547:15Online publication date: 3-Aug-2020
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media